
pco.java

user manual

PCO asks you to carefully read and follow the instructions in this document.

For any questions or comments, please feel free to contact us at any time.

telephone: +49 (0) 9441 2005 50

fax: +49 (0) 9441 2005 20

postal address: Excelitas PCO GmbH

Donaupark 11

93309 Kelheim, Germany

email: info@pco.de

web: www.pco.de

pco.java user manual 2.0.1

Released December 2021

©Copyright Excelitas PCO GmbH

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License. To

view a copy of this license, visit http://creativecommons.org/licenses/by-nd/4.0/ or send a letter to Creative

Commons, PO Box 1866, Mountain View, CA 94042, USA.

pco.java

pco.java user manual 2.0.1 2

mailto:info@pco.de
https://www.pco.de/
http://creativecommons.org/licenses/by-nd/4.0/

Contents

1 General 4

1.1 Installation . 4

1.2 Basic Usage . 5

2 API Documentation 6

2.1 Constructors . 7

2.2 Methods . 8

2.2.1 Record . 8

2.2.2 Stop . 8

2.2.3 Close . 9

2.2.4 GetImage . 9

2.2.5 GetImages . 10

2.2.6 GetExposureTime . 11

2.2.7 SetExposureTime . 11

2.2.8 WaitForFirstImage . 11

2.3 Exception . 12

2.4 Variable Configuration . 14

2.5 Objects . 15

2.5.1 sdk . 15

2.5.2 rec . 15

2.6 DLL Handling . 15

3 Example GUI application 16

3.1 User Manual . 16

pco.java

pco.java user manual 2.0.1 3

1 General

The pco.java package offers all functions for working with PCO cameras that are based on the

current pco.sdk (see our website). All shared libraries for the communication with the camera and

subsequent image processing are included.

• Easy to use de.pco.camera.Camera class.

• Powerful API to pco.sdk.

• Image recording and processing with pco.recorder (see our website).

1.1 Installation

The project is built using Apache Maven.

Maven artifacts on the Maven Central Repository: https://repo1.maven.org/maven2/de/pco/

Parent pom.xml: https://search.maven.org/artifact/de.pco/pco/2.0.0/pom

Group-ID: de.pco

Artifact-ID (Maven modules):

• pco – Parent pom.xml

• pco-common – Common sources for pco-camera and pco-imageio

• pco-camera – Java interface to control the PCO cameras

• pco-imageio – Java ImageIO plugin for the PCO cameras and B16 files

• pco-example – Example application

All jars are compiled and tested for at least Java 8.

Add to your pom.xml

<dependency>

<groupId>de.pco</groupId>

<artifactId>pco-camera</artifactId>

<version>1.0.0</version>

</dependency>

Binaries and sources are also available directly from www.pco.de.

pco.java Chapter 1

pco.java user manual 2.0.1 4

https://www.pco.de/software/development-tools/pcosdk/
https://www.pco.de/software/development-tools/pcorecorder/
https://repo1.maven.org/maven2/de/pco/
https://search.maven.org/artifact/de.pco/pco/2.0.0/pom
https://www.pco.de/software/third-party-software/java/

1.2 Basic Usage

public static void main(String[] args) throws PcoException

{

Camera camera1 = new Camera();

camera1.record(1, ExtendedRecorderType.SEQUENCE);

ImageData imageData = camera1.getImage(0);

camera1.close();

int width = imageData.getWidth();

int height = imageData.getHeight();

int[] values = imageData.getData();

// ... count with the values

}

The pco-imageio artifact is necessary for getting the BufferedImage to be displayed in GUI

applications.

RawImageReader reader = new RawImageReader();

RawImageInputStream riis = new RawImageInputStream(imageData);

reader.setInput(riis);

BufferedImage image = reader.read(0);

... // see also pco-imageio manual

pco.java Chapter 1

pco.java user manual 2.0.1 5

2 API Documentation

The Camera class offers the following methods:

• record() generates, configures, and starts a new recorder instance.

• stop() stops the current recording.

• close() closes the current active camera and releases the occupied ressources.

• getImage() returns an image from the recorder and its metadata.

• getImages() returns all recorded images from the recorder as a list.

• getExposureTime() returns the exposure time of the camera.

• setExposureTime() sets the exposure time for the camera.

• waitForFirstImage() waits for the first available image in the recorder memory.

The Camera class has the following variable:

• configuration

The Camera class has the following objects:

• sdk offers direct access to all underlying functions of the pco.sdk.

• recorder offers direct access to all underlying functions of the pco.recorder.

pco.java Chapter 2

pco.java user manual 2.0.1 6

2.1 Constructors

Description Creates a new Camera object. Checks for the necessary DLLs on the path and loads the native

functions. See section 2.6. Only one Camera object in the application is allowed.

Prototype
public Camera() throws PcoException, IllegalStateException

public Camera(Interface iface) throws PcoException, ←↩
IllegalStateException

Parameter
Name Description

iface A particular HW interface to scan the camera for; if not given, these interfaces are

scanned automatically: GigE, CamLink ME4, USB3, CLHS

Exception
Name Description

PcoException See section 2.3

IllegalStateException Thrown by an attempt to create more Camera objects than the

only one.

pco.java Chapter 2

pco.java user manual 2.0.1 7

2.2 Methods

This section describes all methods offered by the Camera class.

2.2.1 Record

Description Creates, configures, and starts a new recorder instance. The entire camera configuration must be

set before calling record(). The setExposureTime() command is the only exception. This

function has no effect on the recorder object and can be called up during the recording.

Prototype
public void record(long numberOfImages, ExtendedRecorderType type) ←↩

throws PcoException, IllegalArgumentException

Parameter
Name Description

numberOfImages sets the number of images allocated in the driver. The RAM of the PC

limits the maximum value.

type In SEQUENCE mode, this function is blocking during record. The

recorder stops automatically when the numberOfImages is reached. In

SEQUENCE_NON_BLOCKING mode, this function is non-blocking. The

status must be checked before reading an image. This mode is used

to read images while recording, e.g. thumbnail.

In RING_BUFFERmode this function is non blocking. The status must be

checked before reading an image. Recorder does not stop the recording

when the numberOfImages is reached. Once this happens, the oldest

images are overwritten.

In FIFOmode, this function is non-blocking. The status must be checked

before reading an image. When the numberOfImages in the fifo is

reached, the following images are dropped until images are read from

the fifo.

Exception
Name Description

PcoException See section 2.3

IllegalArgumentException Thrown if numberOfImages <= 4 by recorder type FIFO or

RING_BUFFER

2.2.2 Stop

Description Stops the current recording. In RING_BUFFER and FIFOmode, this function must be called by the

user. In SEQUENCE and SEQUENCE_NON_BLOCKINGmode, this function is automatically called up

when the numberOfImages is reached.

Prototype
public void stop() throws PcoException

pco.java Chapter 2

pco.java user manual 2.0.1 8

2.2.3 Close

Description Closes the activated camera and releases the blocked ressources.

Prototype
public void close() throws PcoException

2.2.4 GetImage

Description Returns an image from the recorder including its metadata.

Prototype
public ImageData getImage(int imageNumber) throws PcoException

public ImageData getImage(int imageNumber, Roi roi) throws ←↩
PcoException

Parameter
Name Description

imageNumber Specifies the number of the image to be read. In SEQUENCE or

SEQUENCE_NON_BLOCKING mode, the recorder index matches the

imageNumber. If image_number is set to 0xFFFFFFFF, the last recorded

image is copied. This allows to create a live preview while recording.

roi Sets the region of interest. Only this region of the image is copied to the return

value.

Return ImageData class represents the image data. The user gets the values in the int[] array (by

calling getData()) where only the range 0-65535 will be used.

The reason is that in the underlying C functions of the pco.sdk, the data were recorded as unsigned

short[]. Since java does not have unsigned data types, pco.java wraps these 16-bit values for

the user in the more general int[] array.

Internally, however, the data are still stored in the java.nio.ByteBuffer, 2 bytes for a value, to

spare the memory resources. Although not recommended, the user can get access to this internal

representation by calling a getInputStream() method.

Method Description

+getData(): int[] Returns the data of the image as int[]. The values

are in fact unsigned shorts bounded by 0-65535.

+getDataElementMaxValue(): int Returns the maximum value of a (16-bit unsigned

short) pixel: 65535.

+getWidth(): int Returns the width of the recorded image.

+getHeight(): int Returns the height of the recorded image.

+isCompressed(): boolean Returns always false in the current version of

pco.java, compression to 8-bit proposed for the

future releases.

+getMetadata(): ImageMetadata Wraps the image number and the metadata and

timestamp structures (see pco.recorder manual,

copyImage method).

Continued on next page

pco.java Chapter 2

pco.java user manual 2.0.1 9

https://www.pco.de/software/development-tools/pcorecorder/

Continued from previous page

Method Description

+getInputStream(): InputStream Returns an InputStream on the backing buffer.

Example
camera.record(1, ExtendedRecorderType.SEQUENCE);

ImageData imageData = camera.getImage(0);

int width = imageData.getWidth(); // 2160

int height = imageData.getHeight(); // 2560

int[] data = imageData.getData();

int length = data.length; // 2160 * 2560

imageData = camera.getImage(0, new Roi(1, 1, 300, 300));

width = imageData.getWidth(); // 300

height = imageData.getHeight(); // 300

data = imageData.getData();

length = data.length; // 300 * 300

2.2.5 GetImages

Description Returns all recorded images from the recorder as a list of ImageData.

Prototype
public List<ImageData> getImages() throws PcoException

public List<ImageData> getImages(Roi roi) throws PcoException

Parameter
Name Description

roi Sets the region of interest. Only this region of the image is copied to the return value.

Return List of ImageData objects, see getImage() method (chapter 2.2.4).

Example
camera.record(20, ExtendedRecorderType.SEQUENCE);

List<ImageData> images = camera.getImages();

int listSize = images.size(); // 20

for (ImageData image : images)

{

double mean =

org.apache.commons.math3.stat.StatUtils.mean(image.getData());

System.out.println("Mean: " + mean + " DN");

}

//...

// Mean: 2147.64 DN

// Mean: 2144.61 DN

// ...

images = camera.getImages(new Roi(1, 1, 300, 300));

int width = images.get(0).getWidth(); // 300

int height = images.get(0).getHeight(); // 300

pco.java Chapter 2

pco.java user manual 2.0.1 10

2.2.6 GetExposureTime

Description Returns the exposure time of the camera.

Prototype
public double getExposureTime() throws PcoException

Return Returns the exposure time in seconds.

2.2.7 SetExposureTime

Description Sets the exposure time of the camera.

Prototype
public void setExposureTime(double exposureTime) throws PcoException

Parameter
Name Description

exposureTime Must be given as float or integer value in the unit ‘second’. The underlying

values for the function sdk.setDelayExposureTime(

0, Timebase.MS, time, timebase)

will be calculated automatically. The delay time is set to 0.

Example
camera.setExposureTime(0.001); // 1ms

camera.setExposureTime(1e-3); // 1ms

2.2.8 WaitForFirstImage

Description Waits for the first available image in the recorder memory.

In recorder mode SEQUENCE_NON_BLOCKING, RING_BUFFER, and FIFO, the function

record() returns immediately. Therefore, this function can be used to wait for images from the

camera before calling getImage(), getImages().

Prototype
public void waitForFirstImage() throws PcoException

pco.java Chapter 2

pco.java user manual 2.0.1 11

2.3 Exception

Each function in the pco.sdk and pco.recorder can return a 32-bit error code (see section 5 of the

pco.sdkmanual and the pco_err.h file). For convenience of the application programming in Java,

these errors are wrapped in subclasses of the de.pco.common.exceptions.PcoException

class.

public class PcoException extends IOException

Each possible error in the error level (last three bytes) of the error code presents a particular

PcoException subclass of the same name as the name of the C define (constant).

package de.pco.common.exceptions.application;

...

public class CameratypeException extends PcoException

Therefore, the user can prepare the code for treating all the possible errors returned by the underlying

pco.sdk functions (by catching the PcoException) as well as a code for the particular specific

errors.

try {

// calls PCO_SetRoi function of the pco.sdk

// but upper left corner of the roi should be 1,1

camera.setConfiguration(ConfigurationParameter.ROI,

new Roi(1,1,300,300));

}

// corresponds to the PCO_ERROR_WRONGVALUE (0xA0???001)

catch (WrongvalueException e1) {

System.err.print("Roi values wrong.");

}

// corresponds to the returned PCO_ERROR_INVALIDHANDLE (0xA0???002)

catch (InvalidhandleException e2) {

System.err.print("Camera disconnected.");

}

// corresponds to all the other error codes that could be returned

catch (PcoException e3) {

System.err.print(e3.getMessage());

}

The layer and device level of the returned error code (see section 5 of the pco.sdk manual) are

represented by the LayerEnum and DeviceEnum enumerators which are inherent in all the

PcoException subclasses thrown (the values of these enumerators are accessible by getLayer

() and getDevice() methods).

There are only 4 possible values in the layer level of the error code (APPLICATION, DRIVER,

FIRMWARE, SDKDLL). All of them are in pco.java the values of the LayerEnum enumerator.

Opposite to that, there are about 180 possible distinct codes in the error level of the error code

resulting in 180 PcoException subclasses. Therefore, they are compacted in the java packages

(corresponding to C namespaces) according to the layer level of the error code to which these

PcoException subclasses relate.

pco.java Chapter 2

pco.java user manual 2.0.1 12

package of PcoException subclasses getLayer() returns

de.pco.common.exceptions.application LayerEnum.APPLICATION

de.pco.common.exceptions.common all the possible layers

de.pco.common.exceptions.driver LayerEnum.DRIVER

de.pco.common.exceptions.firmware LayerEnum.FIRMWARE

de.pco.common.exceptions.sdkdll LayerEnum.SDKDLL

There are about 30 possible values in the device level of the error code enumerating among other

the possible drivers (PCO_ERROR_DRIVER_CAMERALINK, PCO_ERROR_DRIVER_USB3,

PCO_ERROR_DRIVER_GIGE etc.). All of them are in pco.java the values of the DeviceEnum

enumerator.

For all the errors corresponding to the PcoException subclasses and all the constants of the

DeviceEnum see pco_err.h.

There is a special PcoException subclass: de.pco.common.exceptions.Warning. You are

suppose to ignore the warnings and therefore they are never thrown as the exceptions by the

methods of pco.java even if they are returned by the underlying C functions of the pco.sdk and

pco.recorder. You are able to check whether a warning occured after a method call by calling the

getLastCallWarning() method of the Sdk and Recorder classes.

pco.java Chapter 2

pco.java user manual 2.0.1 13

2.4 Variable Configuration

The camera parameters are updated by changing the configuration variable.

public Map<ConfigurationParameter, Object> getConfiguration()

throws PcoException;

public void setConfiguration(Map<ConfigurationParameter,

Object> conf) throws PcoException;

Map<ConfigurationParameter, Object> conf =

new HashMap<ConfigurationParameter, Object>();

conf.put(ConfigurationParameter.EXPOSURE_TIME, 0.001)

conf.put(ConfigurationParameter.ROI, new Roi(1, 1, 512, 512))

conf.put(ConfigurationParameter.TIMESTAMP,

TimestampMode.BINARY_ASCII));

conf.put(ConfigurationParameter.PIXEL_RATE, 100000000)

conf.put(ConfigurationParameter.TRIGGER, TriggerMode.SOFTWARETRIGGER)

conf.put(ConfigurationParameter.ACQUIRE, AcquireMode.AUTO)

conf.put(ConfigurationParameter.METADATA, OnOffEnum.ON)

conf.put(ConfigurationParameter.BINNING, new Binning(1, 1))

camera.setConfiguration(conf)

The variable can only be changed before the record() function is called. It is a map with a certain

number of entries. Not all possible elements need to be specified. The following sample code only

changes the PIXEL_RATE and does not affect any other elements of the configuration.

camera.setConfiguration(

ConfigurationParameter.PIXEL_RATE, 286_000_000);

camera.record();

...

pco.java Chapter 2

pco.java user manual 2.0.1 14

2.5 Objects

This section describes all objects offered by the Camera class.

2.5.1 sdk

The object sdk allows direct access to all underlying functions of the pco.sdk.

GetTemperatureReturn temperatures = camera.sdk.getTemperature();

/*

public class GetTemperatureReturn

{

private float sensorTemperature;

private float cameraTemperature;

private float powerTemperature;

}

*/

The javamethods of the sdk object wrap precisely the C functions of the pco.sdk. Every timewhen

a C function returns more than only one value, there is a particular return class in java present. Not

all camera settings are currently covered by the Camera class. Special settings have to be set

directly by calling the respective sdk methods.

2.5.2 rec

The object rec offers direct access to all underlying functions of the pco.recorder. It is not

necessary to call a recorder class method directly. The functions are fully covered by the methods

of the Camera class.

2.6 DLL Handling

The pco-camera module depends on the DLLs of the pco.sdk and pco.recorder. These DLLs

are packed into the pco-camera-1.0.0.jar, distributed by Maven. When the user creates a

new Camera, Sdk, or Recorder object, the constructor checks at runtime whether the DLLs have

been loaded. If not the constructor try to load them from the project root path.

If the DLLs are not found, they get extracted from the pco-camera-1.0.0.jar into the project

root path and loaded automatically. The user is not required to take any other action in both cases.

Note however, that without the DLLs in the working directory, the jar file pco-camera-1.0.0.jar

on the classpath is necessary in spite of the .class files of the pco-camera module only.

pco.java Chapter 2

pco.java user manual 2.0.1 15

3 Example GUI application

pco-example artifact contains an example GUI application. Its purpose is to get the images from

the camera, to display them (including the additional metadata from the camera) and to save

a particular image into B16 file. It also enables the user to load and display B16 and TIFF files, edit

the metadata from and save the file again.

Run the example application (by installed Java) with the mere double-click on pco-example/pco

-example-2.0.0-jar-with-dependencies.jar or from the console using

java -jar pco-example-2.0.0-jar-with-dependencies.jar

Alternatively, get the maven pco-example artifact by adding to your pom.xml

<dependency>

<groupId>de.pco</groupId>

<artifactId>pco-example</artifactId>

<version>2.0.0</version>

</dependency>

The application depends both on pco-camera and on pco-imageio artifacts. Source codes of

the application are in the package de.pco.example, the main class is GuiExample.

Then you can start the example application from your own main method by calling

GuiExample.main(null);

3.1 User Manual

To open the camera connection click on the CS (Camera scanner) button. Select the number of

images to be recorded and click on the Record button. Then you will be able to switch between

the recorded images via the left and right arrow buttons.

On the right-hand side you see a column with the metadata obtained from the camera in addition

with the image. You can change the metadata accordingly, e.g. put a commentary in the TEXT

field.

Save the image and the corresponding metadata into a B16 file via the menu option File→Save.

You can load B16 files and also the 8-bit and 16-bit TIFF files via File→Open. If these files

were created using PCO SW, they also contain the camera metadata and the current example

application will display it also.

pco.java Chapter 3

pco.java user manual 2.0.1 16

for application stories
please visit our website

pco asia
+65 6549 7054
info@pco-imaging.com
pco-imaging.com

pco america
+1 866 678 4566
info@pco-tech.com
pco-tech.com

pco europe
+49 9441 2005 50
info@pco.de
pco.de

pco china
+86 512 67634643
info@pco.cn
pco.cn

contact

	General
	Installation
	Basic Usage

	API Documentation
	Constructors
	Methods
	Record
	Stop
	Close
	GetImage
	GetImages
	GetExposureTime
	SetExposureTime
	WaitForFirstImage

	Exception
	Variable Configuration
	Objects
	sdk
	rec

	DLL Handling

	Example GUI application
	User Manual

