
HANDLE hCam;
err = PCO_OpenCamera(&hCam, 0);

PCO_Description str Description;

strDescription.wSize=sizeof(PCO Description);

err = PCO_ResetSettingsToDefault(cam);

err = PCO_ArmCamera(hCam);

sdk.

HANDLE hCam;
err = PCO_OpenCamera(&hCam, 0);

PCO_Description str Description;

strDescription.wSize=sizeof(PCO Description);

err = PCO_ResetSettingsToDefault(cam);

err = PCO_ArmCamera(hCam);

HANDLE hCam;
err = PCO_OpenCamera(&hCam, 0);

PCO_Description str Description;

strDescription.wSize=sizeof(PCO Description);

err = PCO_ResetSettingsToDefault(cam);

err = PCO_ArmCamera(hCam);

pco.sdk

user manual

Excelitas PCO GmbH asks you to carefully read and follow the instructions in this document.

For any questions or comments, please feel free to contact us at any time.

telephone: +49 (0) 9441 2005 50

fax: +49 (0) 9441 2005 20

postal address: Excelitas PCO GmbH

Donaupark 11

93309 Kelheim, Germany

email: pco@excelitas.com

web: www.pco.de

pco.sdk user manual 1.30.0

Released November 2023

©Copyright Excelitas PCO GmbH

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License. To

view a copy of this license, visit http://creativecommons.org/licenses/by-nd/4.0/ or send a letter to Creative

Commons, PO Box 1866, Mountain View, CA 94042, USA.

pco.sdk

pco.sdk user manual 1.30.0 2

mailto:pco@excelitas.com
https://www.pco.de/
http://creativecommons.org/licenses/by-nd/4.0/

Contents

1 General 9

1.1 Overview . 9

1.2 Conventions . 9

1.3 Building Applications . 10

1.4 Running Applications . 11

1.5 Compiling and Linking . 11

1.6 SDK Folder Overview . 11

1.7 SDK Logging . 13

1.8 Prototype Example . 13

2 API Function Sections 15

2.1 Camera Access . 15

2.1.1 PCO_OpenCamera . 15

2.1.2 PCO_ScanCameras . 16

2.1.3 PCO_OpenNextCamera . 17

2.1.4 PCO_OpenCameraDevice . 18

2.1.5 PCO_GetCameraDeviceStruct . 19

2.1.6 PCO_OpenCameraEx . 20

2.1.6.1 PCO_Openstruct Structure . 22

2.1.7 PCO_CloseCamera . 24

2.1.8 PCO_ResetLib . 25

2.1.9 PCO_InitializeLib . 25

2.1.10 PCO_CleanupLib . 26

2.1.11 PCO_GetVersionInfoSC2_Cam . 27

2.1.12 PCO_CheckDeviceAvailability . 28

2.1.13 PCO_GetDeviceStatus . 29

2.2 Camera Description . 30

2.2.1 PCO_GetCameraDescription . 30

2.2.2 PCO_GetCameraDescriptionEx . 31

2.2.2.1 PCO_Description Structure . 32

2.2.2.2 Color Pattern Description (2x2 matrix) . 36

2.2.2.3 Sensor Type Codes . 37

2.2.2.4 GeneralCaps1-Bits . 38

2.2.2.5 GeneralCaps3-Bits . 39

2.2.2.6 PCO_Description2 Structure . 39

2.2.2.7 ModulateCaps-Bits . 41

2.3 General Camera Status . 41

2.3.1 PCO_GetGeneral . 41

2.3.1.1 PCO_General Structure . 42

2.3.2 PCO_GetCameraType . 43

2.3.2.1 PCO_CameraType Structure . 43

2.3.2.2 Camera type codes . 44

2.3.2.3 Interface type codes . 45

2.3.3 PCO_GetCameraHealthStatus . 46

2.3.3.1 Warning bits . 47

2.3.3.2 Error bits . 47

2.3.3.3 Status bits . 47

2.3.4 PCO_GetTemperature . 50

2.3.5 PCO_GetInfoString . 51

2.3.5.1 InfoType . 51

2.3.6 PCO_GetCameraName . 52

pco.sdk

pco.sdk user manual 1.30.0 3

2.3.7 PCO_GetFirmwareInfo . 53

2.3.7.1 PCO_SC2_Firmware_DESC Structure . 54

2.3.8 PCO_GetColorCorrectionMatrix . 54

2.3.9 PCO_GetDSNUAdjustMode . 55

2.3.10 PCO_SetDSNUAdjustMode . 56

2.3.11 PCO_InitDSNUAdjustment . 57

2.4 General Camera Control . 58

2.4.1 PCO_ArmCamera . 58

2.4.2 PCO_CamLinkSetImageParameters (obsolete) . 59

2.4.3 PCO_SetImageParameters . 60

2.4.3.1 Image parameter bits . 61

2.4.4 PCO_ResetSettingsToDefault . 61

2.4.4.1 Default settings . 62

2.4.5 PCO_SetTimeouts . 62

2.4.6 PCO_RebootCamera . 64

2.4.7 PCO_GetCameraSetup . 65

2.4.7.1 pco.edge dwSetup[0] . 66

2.4.8 PCO_SetCameraSetup . 66

2.4.9 PCO_GetShutterMode . 67

2.4.10 PCO_SetShutterMode . 68

2.4.11 PCO_ControlCommandCall . 69

2.4.12 PCO_GetFanControlParameters . 70

2.4.13 PCO_SetFanControlParameters . 71

2.5 Image Sensor . 72

2.5.1 PCO_GetSensorStruct . 72

2.5.2 PCO_SetSensorStruct . 73

2.5.2.1 PCO_Sensor Structure . 74

2.5.3 PCO_GetSizes . 75

2.5.4 PCO_GetSensorFormat . 76

2.5.5 PCO_SetSensorFormat . 77

2.5.6 PCO_GetROI . 78

2.5.7 PCO_SetROI . 79

2.5.8 PCO_GetBinning . 81

2.5.9 PCO_SetBinning . 82

2.5.10 PCO_GetPixelRate . 83

2.5.11 PCO_SetPixelRate . 84

2.5.12 PCO_GetConversionFactor . 85

2.5.13 PCO_SetConversionFactor . 86

2.5.14 PCO_GetDoubleImageMode . 87

2.5.15 PCO_SetDoubleImageMode . 88

2.5.16 PCO_GetADCOperation . 89

2.5.17 PCO_SetADCOperation . 90

2.5.18 PCO_GetIRSensitivity . 91

2.5.19 PCO_SetIRSensitivity . 92

2.5.20 PCO_GetCoolingSetpointTemperature . 93

2.5.21 PCO_SetCoolingSetpointTemperature . 94

2.5.22 PCO_GetCoolingSetpoints . 95

2.5.23 PCO_GetOffsetMode . 96

2.5.24 PCO_SetOffsetMode . 97

2.5.25 PCO_GetNoiseFilterMode . 98

2.5.26 PCO_SetNoiseFilterMode . 99

2.5.27 PCO_GetLookupTableInfo . 100

2.5.28 PCO_GetActiveLookupTable . 102

2.5.29 PCO_SetActiveLookupTable . 103

2.5.30 PCO_GetSensorDarkOffset . 104

pco.sdk

pco.sdk user manual 1.30.0 4

2.6 Timing Control . 105

2.6.1 PCO_GetTimingStruct . 105

2.6.2 PCO_SetTimingStruct . 106

2.6.2.1 PCO_Timing Structure . 107

2.6.3 PCO_GetCOCRuntime . 109

2.6.4 PCO_GetDelayExposureTime . 110

2.6.5 PCO_SetDelayExposureTime . 111

2.6.6 PCO_GetDelayExposureTimeTable . 113

2.6.7 PCO_SetDelayExposureTimeTable . 114

2.6.8 PCO_GetFrameRate . 116

2.6.9 PCO_SetFrameRate . 117

2.6.10 PCO_GetFPSExposureMode . 119

2.6.11 PCO_SetFPSExposureMode . 120

2.6.12 PCO_GetTriggerMode . 121

2.6.12.1 Explanation of available trigger modes . 122

2.6.13 PCO_SetTriggerMode . 124

2.6.14 PCO_ForceTrigger . 125

2.6.15 PCO_GetCameraBusyStatus . 126

2.6.16 PCO_GetPowerDownMode . 127

2.6.17 PCO_SetPowerDownMode . 128

2.6.18 PCO_GetUserPowerDownTime . 129

2.6.19 PCO_SetUserPowerDownTime . 130

2.6.20 PCO_GetModulationMode . 131

2.6.20.1 Modulation Mode Timing Diagram . 133

2.6.21 PCO_SetModulationMode . 135

2.6.22 PCO_GetHWIOSignalCount . 137

2.6.23 PCO_GetHWIOSignalDescriptor . 138

2.6.23.1 PCO_Single_Signal_Desc Structure . 139

2.6.23.2 Signal definitions bits . 139

2.6.23.3 Signal I/O standard bits . 139

2.6.23.4 Signal polarity bits . 140

2.6.23.5 Signal filter option bits . 140

2.6.23.6 Signal functionality . 140

2.6.23.7 Extended signal timing rolling shutter . 141

2.6.24 PCO_GetHWIOSignal . 141

2.6.25 PCO_SetHWIOSignal . 142

2.6.25.1 PCO signal Structure . 143

2.6.26 PCO_GetHWIOSignalTiming . 145

2.6.27 PCO_SetHWIOSignalTiming . 146

2.6.28 PCO_GetImageTiming . 147

2.6.28.1 PCO ImageTiming Structure . 148

2.6.29 PCO_GetCameraSynchMode . 149

2.6.30 PCO_SetCameraSynchMode . 150

2.6.31 PCO_GetExpTrigSignalStatus . 151

2.6.32 PCO_GetFastTimingMode . 152

2.6.33 PCO_SetFastTimingMode . 153

2.7 Recording Control . 154

2.7.1 PCO_GetRecordingStruct . 154

2.7.2 PCO_SetRecordingStruct . 155

2.7.2.1 PCO_Recording Structure . 156

2.7.3 PCO_GetRecordingState . 158

2.7.4 PCO_SetRecordingState . 159

2.7.5 PCO_GetStorageMode . 160

2.7.6 PCO_SetStorageMode . 161

2.7.7 PCO_GetRecorderSubmode . 162

pco.sdk

pco.sdk user manual 1.30.0 5

2.7.8 PCO_SetRecorderSubmode . 163

2.7.9 PCO_GetAcquireMode . 164

2.7.10 PCO_SetAcquireMode . 165

2.7.11 PCO_GetAcquireModeEx . 166

2.7.12 PCO_SetAcquireModeEx . 168

2.7.13 PCO_GetAcqEnblSignalStatus . 170

2.7.14 PCO_GetAcquireControl . 171

2.7.15 PCO_SetAcquireControl . 172

2.7.16 PCO_GetMetaDataMode . 173

2.7.17 PCO_SetMetaDataMode . 174

2.7.18 PCO_GetRecordStopEvent . 175

2.7.19 PCO_SetRecordStopEvent . 176

2.7.20 PCO_StopRecord . 177

2.7.21 PCO_SetDateTime . 178

2.7.22 PCO_GetTimestampMode . 179

2.7.23 PCO_SetTimestampMode . 181

2.8 Storage Control . 182

2.8.1 PCO_GetStorageStruct . 183

2.8.2 PCO_SetStorageStruct . 184

2.8.2.1 PCO_Storage Structure . 185

2.8.3 PCO_GetCameraRamSize . 185

2.8.4 PCO_GetCameraRamSegmentSize . 186

2.8.5 PCO_SetCameraRamSegmentSize . 187

2.8.6 PCO_ClearRamSegment . 189

2.8.7 PCO_GetActiveRamSegment . 190

2.8.8 PCO_SetActiveRamSegment . 191

2.8.9 PCO_GetCompressionMode . 192

2.8.10 PCO_SetCompressionMode . 193

2.8.11 PCO_GetMaxNumberOfImagesInSegment . 194

2.9 Image Information . 195

2.9.1 PCO_GetImageStruct . 195

2.9.1.1 PCO_Image Structure . 196

2.9.2 PCO_GetSegmentStruct . 196

2.9.2.1 PCO_Segment Structure . 197

2.9.3 PCO_GetSegmentImageSettings . 198

2.9.4 PCO_GetNumberOfImagesInSegment . 199

2.9.5 PCO_GetBitAlignment . 200

2.9.6 PCO_SetBitAlignment . 201

2.9.7 PCO_GetHotPixelCorrectionMode . 202

2.9.8 PCO_SetHotPixelCorrectionMode . 203

2.10 Buffer Management . 204

2.10.1 PCO_AllocateBuffer . 204

2.10.2 PCO_FreeBuffer . 206

2.10.3 PCO_GetBufferStatus . 207

2.10.4 PCO_GetBuffer . 208

2.11 Image Acquisition . 209

2.11.1 PCO_GetImageEx . 209

2.11.2 PCO_GetImage (obsolete) . 212

2.11.3 PCO_AddBufferEx . 213

2.11.4 PCO_AddBuffer (obsolete) . 215

2.11.5 PCO_AddBufferExtern . 216

2.11.6 PCO_AddBufferExtern_CB . 218

2.11.7 PCO_CancelImages . 219

2.11.8 PCO_RemoveBuffer (obsolete) . 220

2.11.9 PCO_GetPendingBuffer . 221

pco.sdk

pco.sdk user manual 1.30.0 6

2.11.10PCO_WaitforBuffer . 222

2.11.10.1PCO_Buflist Structure . 223

2.11.11PCO_WaitforNextBufferNum . 224

2.11.12PCO_WaitforNextBufferAdr . 225

2.11.13PCO_EnableSoftROI . 226

2.11.14PCO_GetAPIManagement . 227

2.11.15PCO_GetMetaData . 228

2.11.15.1PCO_METADATA_STRUCT Structure . 229

2.11.16PCO_GetMetaDataExtern . 231

2.11.17PCO_GetTimeStamp . 232

2.12 Driver Management . 233

2.12.1 PCO_GetTransferParameter . 233

2.12.2 PCO_SetTransferParameter . 234

2.12.3 Transfer Parameter Structures . 235

2.12.3.1 FireWire interface . 235

2.12.3.2 CameraLink interface . 236

2.12.3.3 USB interface . 238

2.12.3.4 GigE interface . 238

2.13 Special Commands pco.edge . 240

2.13.1 PCO_GetSensorSignalStatus . 240

2.13.1.1 Sensor action state bits . 241

2.13.2 PCO_GetCmosLineTiming . 242

2.13.3 PCO_SetCmosLineTiming . 243

2.13.4 PCO_GetCmosLineExposureDelay . 244

2.13.5 PCO_SetCmosLineExposureDelay . 245

2.13.6 PCO_SetTransferParametersAuto . 246

2.13.7 PCO_GetInterfaceOutputFormat . 247

2.13.7.1 SCCMOS readout format . 248

2.13.8 PCO_SetInterfaceOutputFormat . 249

2.14 Special Commands pco.dimax . 250

2.14.1 PCO_GetImageTransferMode . 250

2.14.1.1 IMAGE_TRANSFER_MODE_PARAM Structure 250

2.14.1.2 Transfer mode definition . 251

2.14.1.3 Parameter transfer mode cutout XY . 251

2.14.1.4 Parameter transfer mode scaled 8 bit . 251

2.14.2 PCO_SetImageTransferMode . 251

2.14.3 PCO_GetCDIMode . 253

2.14.4 PCO_SetCDIMode . 254

2.14.5 PCO_GetPowerSaveMode . 255

2.14.6 PCO_SetPowerSaveMode . 256

2.14.7 PCO_GetBatteryStatus . 257

2.15 Special Commands pco.dimax with HD-SDI . 259

2.15.1 PCO_GetInterfaceOutputFormat . 259

2.15.2 PCO_SetInterfaceOutputFormat . 260

2.15.2.1 HD-SDI formats . 261

2.15.3 PCO_PlayImagesFromSegmentHDSDI . 261

2.15.4 PCO_GetPlayPositionHDSDI . 264

2.15.5 PCO_GetColorSettings . 265

2.15.6 PCO_SetColorSettings . 266

2.15.6.1 PCO_Image_ColorSet Structure . 266

2.15.7 PCO_DoWhiteBalance . 267

2.16 Special Commands pco.flim . 268

2.16.1 PCO_GetFlimModulationParameter . 268

2.16.2 PCO_SetFlimModulationParameter . 269

2.16.3 PCO_GetFlimMasterModulationFrequency . 271

pco.sdk

pco.sdk user manual 1.30.0 7

2.16.4 PCO_SetFlimMasterModulationFrequency . 272

2.16.5 PCO_GetFlimPhaseSequenceParameter . 273

2.16.6 PCO_SetFlimPhaseSequenceParameter . 276

2.16.7 PCO_GetFlimRelativePhase . 281

2.16.8 PCO_SetFlimRelativePhase . 282

2.16.9 PCO_GetFlimImageProcessingFlow . 283

2.16.10PCO_SetFlimImageProcessingFlow . 285

2.16.11Image sequences . 287

2.17 Lens Control . 289

2.17.1 PCO_InitLensControl . 289

2.17.1.1 PCO_LensControl Structure . 291

2.17.1.2 PCO_LensControlParameters . 291

2.17.1.3 DEFINES . 292

2.17.2 PCO_CleanupLensControl . 292

2.17.3 PCO_CloseLensControl . 294

2.17.4 PCO_GetLensFocus . 295

2.17.5 PCO_SetLensFocus . 296

2.17.6 PCO_GetAperture . 297

2.17.7 PCO_SetAperture . 298

2.17.8 PCO_GetApertureF . 299

2.17.9 PCO_SetApertureF . 300

2.17.10PCO_SendBirgerCommand . 301

2.17.10.1PCO_Birger Structure . 301

2.18 Special Commands pco.dicam . 302

2.18.1 PCO_GetIntensifiedGatingMode . 303

2.18.2 PCO_SetIntensifiedGatingMode . 304

2.18.3 PCO_GetIntensifiedMCP . 305

2.18.4 PCO_SetIntensifiedMCP . 306

2.18.5 PCO_GetIntensifiedLoopCount . 307

2.18.6 PCO_SetIntensifiedLoopCount . 308

2.18.7 PCO_Description_Intensified . 309

3 Image Area Selection (ROI) 311

3.1 Camera Constraints . 312

4 Typical Implementation 313

4.1 Basic Handling . 313

4.1.1 Short Code Discussion . 314

4.2 Example ’Get single images from running camera’ . 316

4.3 Example ’Get single images from camera recorder’ . 319

4.4 Example ’Get multiple images from running camera’ . 322

4.5 Example ’Get multiple images from camera recorder’ . 326

4.6 Debugging with GigE interface . 331

5 Error/Warning Codes 332

5.1 PCO_GetErrorTextSDK . 333

6 About Excelitas PCO 335

pco.sdk

pco.sdk user manual 1.30.0 8

1 General

This document describes the pco.software development kit. The application interface can be used

for all PCO cameras. 1

The pco.sdk is a collection of libraries and sample projects for Windows operating systems. All

libraries are designed as dynamic link C libraries (DLL) which allow easy development of your

own applications to manage one or more PCO cameras connected to a computer. Using a library

with C calling convention the functionality of the DLL is also available, when writing managed C#

and Visual Basic applications and can extend the capability of scripting languages e.g. Python

and Matlab. Also PCO’s own application Camware is based on the SDK.

The first chapter provides a short introduction on how to work with the SDK. An overview of

all available functions, described in detail, of the pco camera application programming interface

(pco camera API) can be found in the reference section (see chapter API Function Sections).

Example source code can be found in the examples section (see chapter Image Area Selection

(ROI)) or in the installation directory of the SDK.

Definition SDK (Software development kit): SDK is a collection of librariers, sample projects and applications

to develop software.

API (Application programming interface): API is an interface for application programming. It is

a set of clearly defined methods of communication between various software components.

1.1 Overview

The API base functionality is to configure and control the camera settings and to transfer the

acquired images from the camera to the PC. These functions are available through function calls

inside the SC2_Cam.dll. The SC2_Cam.dll has the capability to control any PCOcamera regardless

of the camera type and hardware interface.

In principle the API can be divided into two parts:

• Control the camera settings: The camera settings define how images are acquired in the

camera. (exposure time, ROI, trigger,...). All settings will be finalized with an arm command.

If the arm was successful, the camera can be started and will then acquire images depending

on the specified settings.

• Start an image transfer from the camera to the PC: Image transfers can be invoked at

any camera state. To successfully fulfill a transfer images must have been acquired from the

camera or will be acquired within a predefined timeout. If a transfer cannot be completed

an error status will be returned. When camera internal memory is available, the data transfer

could also be at a later time, after the images have been acquired.

1.2 Conventions

The following typographic conventions are used in this manual:

• Bold: Important functions, procedures or modes used in this manual

• Bold, clickable, e.g. PCO_ResetSettingsToDefault: Cross reference to a chapter or section,

clickable

• [words in brackets]: [run]: Possible values or states of the described functions

1Some functions are only valid for specific camera types or depend on camera descriptor parameters, which is indicated

by Supported camera type and Descriptor dependency, respectively.

pco.sdk Chapter 1

pco.sdk user manual 1.30.0 9

• ALL CAPITAL WORDS: TRUE: Logical or boolean values such as TRUE, FALSE, ON, OFF,

RISING, FALLING, HIGH, LOW

• <words in arrows>: <acq enbl>: Names of hardware input/output signals

• Font Courier New: strGeneral.wSize = sizeof(strGeneral): C Example Code

• bold italics: Important terms

1.3 Building Applications

First step to successfully operate a PCO camera is to establish a valid connection. This is the

task of the PCO_OpenCamera call. This function scans through all available interface DLLs to

determine if a camera is connected. On success, all internals are initialized and a unique handle

will be assigned to this camera. This handle must be used in all subsequent function calls. For

multi camera operation PCO_OpenCamera can be called several times.

As a next step the camera description and status should be queried by callingPCO_GetCameraDescription

and PCO_GetCameraHealthStatus. Due to the wide variety of the PCO cameras that can be

controlled by the library, the camera description should be used to check the availability of enhanced

features and the limitations of the connected camera. If the camera is already recording, images

can be transferred. If the camera is not recording or after a stop command, the camera settings

can be changed.

After any change of a camera parameter, a PCO_ArmCamera commandmust be sent. When this

command is received by the camera all previous parameter settings are validated and on success

the camera is prepared to start recording with the new parameter set. The only exception to this

procedure is that exposure and delay time settings can be changed without following PCO_-

ArmCamera command if the camera is recording.

The current recording state can be queried with PCO_GetRecordingState and must be changed

with PCO_SetRecordingState. Setting the camera in Recording State in general starts image

exposing and readout of the image sensor. Timing and exposure start can be controlled through

different operating mode settings of the camera.

Two different types of cameras can be found in the PCO camera family: those that have internal

memory like pco.dimax and the others without internal memory running in streaming mode like

the pco.edge.

While recording, single images can be grabbed from both types with the image transfer function

PCO_GetImageEx. The image transfer function PCO_AddBufferEx, which sets up an internal

image request queue, should be used for fast readout of multiple images. When grabbing of

multiple images with PCO_AddBufferEx is finished, the command PCO_CancelImages must be

called to reset the internal buffer queue. After recording is stopped, both image transfer functions

can also be used to readout image data from the internal memory (if available).

The API is not thread safe. This means that it is not possible to set up two or more threads getting

images with different settings and sizes. However threading is possible in case the developer

takes care for correct thread synchronization, e.g. one thread changes the settings and a second

one grabs the images. In this case the second thread has to stop grabbing until the first one has

changed the settings and has executed a PCO_ArmCamera command. In principle the order of

commands shown in the Typical Implementation should be met.

pco.sdk Chapter 1

pco.sdk user manual 1.30.0 10

1.4 Running Applications

To allow access to the API, the SC2_Cam.dll must reside in the application directory or in the

library search path when implicit linkage is used. The user can also link explicitly. In this case the

SC2_Cam.dll can be placed in the application folder or search path. The dll can also be placed

in a known folder, but you’ll have to call LoadLibrary with the complete path then. To support all

available hardware interfaces of PCO cameras the SC2_Cam.dll depends on additional interface

DLLs. These are either installed during PCO driver installation or must be installed / copied to the

application directory. Because all these DLLs are available in both 32 Bit and a 64 Bit versions,

pay attention to copy the correct bitness for the used application.

1.5 Compiling and Linking

To use the API Library in an application, the SC2_CamExport.h and the SC2_SDKStructures.h

file must be added in addition to the standard header files. It is recommended to add also the

header files with the PCO error codes pco_err.h and the error description pco_errtxt.h.

For better control of the interface layer theSC2_SDKAddendum.h file is necessary. Useful definitions

for parameter settings can be found in the SC2_defs.h.

The application program must be linked with the appropriate library (32Bit or a 64Bit) which can

be found in the lib or lib64 folders. The API can be invoked either by linking to the SC2_Cam.lib

through project settings or by loading the required functions from the SC2_Cam.dll explicitly at

runtime with the LoadLibrary function from the Windows-API.

A lot of functions use structures as input and output. To enhance security of the API interface,

each structure includes a wSize parameter, which must be filled carefully (typical value is sizeof

(API structure)). For nested structures the wSize parameter of all structures must be set.

Typical implementation for setting wSize parameter of embedded structures:

strGeneral.wSize = sizeof(strGeneral);

strGeneral.strCamType.wSize = sizeof(strGeneral.strCamType);

strCamType.wSize = sizeof(strCamType);

1.6 SDK Folder Overview

During installation the following files are copied to the target-directory.

\include

sc2_camexport.h

API function declarations

sc2_defs.h

Useful camera definitions

sc2_sdkstructures.h

Structures which are used from different API functions.

Provide information about camera settings and API status.

The structures can be used to control camera settings.

To enhance security of the API interface, each structure includes a wSize parameter,

which must be filled carefully (typical value is sizeof (API structure)).

For nested structures

the wSize parameter of all structures has to be set.

sc2_sdkaddendum.h

Interface specific structures and defines

pco.sdk Chapter 1

pco.sdk user manual 1.30.0 11

pco_err.h

Definition of return values and detailed error description

\lib64

sc2_cam.lib

API functions library, which can be linked to the application.

\bin64

sc2_cam.dll

API executable dynamic link library

sc2_cl_me4.dll

Interface DLL to Silicon Software ME4 Camera Link framegrabber family

sc2_clhs.dll

Interface DLL to CLHS framegrabber

sc2_gige.dll

Interface DLL for GigE cameras

sc2_genicam.dll

Interface DLL for for the pco.pixelfly 1.3 SWIR camera

For the above Camera Link interface DLL’s the Runtime/driver environment of the framegrabber

manufacturer must be installed and working properly.

Additional interfaces are available through the following DLLs: sc2_usb.dll, sc2_usb3.dll. These

interface DLLs are installed to the system directory during pco.driver installation.

pco.sdk Chapter 1

pco.sdk user manual 1.30.0 12

1.7 SDK Logging

All low level commands sent from the sc2_cam.dll to the camera can be reported to a file. To

enable logging, a file called ‘sc2_cam.log’ must be created in the following directory:

>systemdisc<:\ProgramData\pco\(On Windows 7/8/10)

sc2_cam.log will be overwritten with each session start. In case the user likes to keep older

sessions, rename the logfile to sc2_cam_a.log. This will append further sessions. After ending

your logging session please do not forget to delete the sc2_cam(_a).log file, because it may cut

down performance.

To get enhanced reports the logging can also be enabled on any interface DLL. To enable logging, a

file called with the interface DLL namewith extension ’.log’ must be created in the abovementioned

directory. Several Loglevels can be selected. This is done through ’LOGGING=’ parameter in the

appropriate *_param.ini file. For all Camera Link interfaces this file is named sc2_cl_param.ini

the other interface DLLs follow the above naming convention.

E.g. logging of:

sc2_cl_me4.dll is written to sc2_cl_me4.log and controlled through sc2_cl_param.ini.

sc2_usb.dll is written to sc2_usb.log and controlled through sc2_usb_param.ini.

1.8 Prototype Example

The section shows the general representation format of the API functions in this manual.

Description This paragraph gives a brief summary of the function and its properties. The main behavior is

described as well as the required usage and additional restrictions. If the function needs special

requirements or has certain connections to other functions, this is also mentioned here.

Supported

camera type(s)

If the described function is not available for all cameras, the supported camera types are listed

here. Otherwise just All cameras is written.

Descriptor

dependency

Some functions are only available if special flags in the PCO_Description Structure are set or

cleared. If the current function has such dependencies, the names of the associated flags are

listed here (None otherwise). The PCO_Description Structure can be read out from the camera

by calling PCO_GetCameraDescriptionEx.

Prototype This paragraph shows the function prototype (see example below). A short comment behind each

argument shows if it is input, output or in- and output.

SC2_SDK_FUNC int WINAPI PCO_Example (

HANDLE* ph, //in

WORD* inOut //in,out

DWORD* dataOut //out

);

Parameter All arguments of the function are listed in a table with their type and a short description. For the

example function above, this table looks like the following:

pco.sdk Chapter 1

pco.sdk user manual 1.30.0 13

Name Type Description

ph HANDLE* Handle to a previously opened camera device

inOut WORD* Pointer to a WORD used as in and output parameter

dataOut DWORD* Pointer to a DWORD holding some output data

Parameter

dependency

If the arguments of the functions have dependencies, which e.g. limit the allowed range or determine

other constraints (such as symmertrical ROI, constant value stepping…) these flags or conditions

are shown here (not present if there are no dependencies).

Return value The meaning of the return value is described. Since all functions have error codes as return value,

the paragraph always looks like this:

Name Type Description

ErrorMessage int 0 in case of success, error code otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 1

pco.sdk user manual 1.30.0 14

2 API Function Sections

2.1 Camera Access

This chapter describes all functions that make it possible to access connected cameras.

2.1.1 PCO_OpenCamera

Description This function is used to get a connection to a camera. A unique handle is returned, which must

be used for all other function calls. This function scans through all available interfaces and tries to

connect to the next available camera. If more than one camera is connected to the computer this

function must be called a second time to get the handle for the next camera. If a distinct camera

should be accessed PCO_OpenCameraEx has to be used.

Because this function is using a scan process, the wCamNum parameter is not used.

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_OpenCamera (

HANDLE* ph, //in,out

WORD wCamNum //in

);

Parameter Name Type Description

ph HANDLE* Pointer to a HANDLE:

• On input the HANDLEmust be set to NULL to open next available

camera

• On output a unique HANDLE is returned, if a valid connection

was established

wCamNum WORD Not used

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

Example
HANDLE hCamera;

hCamera = NULL; //Set to zero in case of opening the first time

int err = PCO_OpenCamera(&hCamera, 0);

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 15

2.1.2 PCO_ScanCameras

Description Scan any or explicit interface for any or unused cameras. Can be used to check status of camera

device, which has been found with PCO_ScanCameras. Linux only

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_ScanCameras (

WORD type, //in

WORD* device_count, //out

PCO_DEVICE[] device_array, //out

size_t array_size //in

);

Parameter Name Type Description

type WORD Defines scanning parameters see defines in pco_-

device.h.

device_count WORD* Pointer to a WORD variable, which receive count of

according PCO_DEVICE structures.

device_array PCO_Device[] Array which is filled with according PCO_DEVICE

structures. Can be NULL on input. Then only device_-

count is returned. If more devices are found than fit into

the array, array is truncated.

array_size size_t Length of the device_array in bytes (size of (PCO_-

DEVICE)*count).

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 16

2.1.3 PCO_OpenNextCamera

Description Opens a camera object. This function is used to get a connection to a camera. A unique handle

is returned, which must be used for all other function calls. A handle to the next camera, which is

not already in use is returned. If more than one camera is connected to the computer this function

can be called multiple times. Camera is initialized before return. Linux only.

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_OpenNextCamera (

HANDLE* camhandle, //in,out

);

Parameter Name Type Description

camhandle HANDLE* Pointer to a HANDLE:

• On input the HANDLE must be set to NULL to open next

available camera

• On output a unique HANDLE is returned, if a valid connection

was established

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 17

2.1.4 PCO_OpenCameraDevice

Description Opens a camera object with id from scan. This function is used to get a connection to a camera.

A unique handle is returned, which must be used for all other function calls. The id from one of the

PCO_Device structures returned from PCO_ScanCamera is used to select the camera. Camera is

initialized before return. Linux only.

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_OpenCameraDevice (

HANDLE* camhandle, //in,out

WORD id //in

);

Parameter Name Type Description

camhandle HANDLE* Pointer to a HANDLE:

• On input the HANDLE must be set to NULL to open next

available camera

• On output a unique HANDLE is returned, if a valid connection

was established

id WORD Valid id from one of the PCO_Device structures, returned from

PCO_ScanCamera.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 18

2.1.5 PCO_GetCameraDeviceStruct

Description Get PCO_Device structure with id. Linux only.

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetCameraDeviceStruct (

PCO_Device& device, //out

WORD id //in

);

Parameter Name Type Description

device PCO_Device& Reference to PCO_Device structure.

id WORD Valid id from structure PCO_Device.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 19

2.1.6 PCO_OpenCameraEx

Description This function is used to get a connection to a distinct camera, e.g. a camera which is connected

to a specific interface port. A unique handle is returned, which must be used for all other function

calls. To select the desired camera the structure PCO_Openstruct Structure must be filled with

appropriate parameters before the function is called. If no camera could be found at the selected

interface an error is returned and the handle is set to NULL.

As a special case this function can be used to establish a valid connection to a camera through

the serial interface of any Camera Link grabber to control the camera with the PCO SDK functions.

The image grab and transfer functions of the pco.sdk can not be used in this mode. The name of

the grabber manufacturer clserxxx.dll must be provided in the PCO_Openstruct Structure.

If more then one camera with GigE interface are used, only those cameras that have established

a connection with a valid IP address can be opened, when the PCO_OpenCameraEx function is

called the first time from an application.

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_OpenCameraEx (

HANDLE* ph, //in,out

PCO_OpenStruct* strOpenStruct //in

);

Parameter If wInterfacType and wCameraNum are used for application site enumeration the application

should scan until error PCO_ERROR_DRIVER_NODRIVER (0x80002006) occurs. For Camera

Link devices some cameras need two ports (pco.edge). In this case wCameraNum has to be

incremented a second time in order to get the next camera.

Name Type Description

ph HANDLE* Pointer to a HANDLE:

• On input the HANDLE must be set to NULL to

open next available camera

• On output a unique HANDLE is returned, if a

valid connection was established

strOpenStruct PCO_OpenStruct* Pointer to a previously filled PCO_Openstruct

Structure

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 20

Example
HANDLE hCamera;

...

hCamera = NULL; Set to zero in case of openin ←↩
the first time

PCO_OpenStruct strOpenStruct;

...

strOpenStruct.wSize = sizeof(PCO_OpenStruct); Sizeof this struct

strOpenStruct.wInterfaceType = PCO_INTERFACE_FW;

1: Firewire, 2: CamLink with Matrox, 3: CamLink with Silicon SW

strOpenStruct.wCameraNumber = 0;

strOpenStruct.wCameraNumAtInterface will be filled by the ←↩
OpenCameraEx call;

Current number of camera at the interface

strOpenStruct.wOpenFlags[0] = <combination of flags>; Used for ←↩
setting up camlink with Silicon SW

Following defines exist for Silicon Software Me3:

#define PCO_SC2_CL_ME3_LOAD_SINGLE_AREA 0x0100

#define PCO_SC2_CL_ME3_LOAD_DUAL_AREA 0x0200

#define PCO_SC2_CL_ME3_LOAD_SINGLE_LINE 0x0300

#define PCO_SC2_CL_ME3_LOAD_DUAL_LINE 0x0400 -> this is the default←↩
setting

Set to zero for all other interface types

strOpenStruct.wOpenFlags[1...19] are not used up to now

int err = PCO_OpenCamera(&hCamera, &strOpenStruct);

...

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 21

2.1.6.1 PCO_Openstruct Structure

Name Type Description

wSize WORD Size of this structure

wInterfaceType WORD Interface type number defined in

sc2_SDKStructures.h. With the interface type the

according interface DLL is selected:

• 1=Firewire

• 2=Camera Link Matrox

• 3=Genicam PCO camera

• 4=Camera Link National Instruments

• 5=PCO GigE

• 6=PCO USB2

• 7=Camera Link Silicon Software mE IV

• 8=PCO USB3.0, PCO USB3.1

• 9=reserved

• 10=Camera Link serial port only

• 11=clhs

• 0xFFFF = The SDK-DLL tries to find a camera at

all known interfaces, starting with FireWire (1)

wCameraNumber WORD Desired camera number at the selected interface

wCameraNumAtInterface WORD Resulting current number of camera at the interface.

Must be set to zero for successive open calls for the

selected interface.

wOpenFlags[10] WORD List of WORDs with additional flags to control the

interface DLL.

• wOpenFlags[0]: CameraLink Bitfield:

– 0x1000: to open only serial connection

– 0x2000: a clserxxx.dll filename is provided

• wOpenFlags[1]:

• wOpenFlags[2]:

– 0x0001: must be set when the generic

interface is of type Camera Link.

(PCO_OPENFLAG_GENERIC_IS_CAMLINK)

dwOpenFlags[5] DWORD List of DWORDS moved on to interface dll.

• dwOpenFlags[0]: GigE:IP address

Continued on next page

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 22

Continued from previous page

Name Type Description

wOpenPtr[6] void* List of pointers which hold additional information:

• wOpenPtr[0]: moved on to interface dll.

Camera Link: pointer to a character array, which

holds the filename of the clserxxx.dll as ASCII

string

• wOpenPtr[1]: Camera Link: reserved for

configuration filename

• wOpenPtr[2]: Reserved

• wOpenPtr[3]: Reserved

• wOpenPtr[4]: Reserved

• wOpenPtr[5]: filename of generic interface

DLL as ASCII string

zzwDummy[8] WORD Reserved

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 23

2.1.7 PCO_CloseCamera

Description This function is used to close the connection to a previously opened camera.

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_CloseCamera (

HANDLE ph //in

);

ParameterReturn value Name Type Description

ph HANDLE Handle to a previously opened camera device

Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

Example
HANDLE hCamera;

...

int err = PCO_OpenCamera(&hCamera, 0);

...

err = PCO_CloseCamera(hCamera);

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 24

2.1.8 PCO_ResetLib

Description This function is used to set the SC2_cam Library to an initial state. All camera handles have to be

closed with PCO_CloseCamera before this function is called.

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_ResetLib (

);

Parameter No parameter

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

2.1.9 PCO_InitializeLib

Description Linux:

Enumerate known Interfaces and start global scan process

Windows:

Currently no functionality

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_InitializeLib (

);

Parameter None

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 25

2.1.10 PCO_CleanupLib

Description Linux:

Free all interface resources. Must be called when using Kaya-Runtime

Windows:

Currently no functionality

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_CleanupLib (

);

Parameter None

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 26

2.1.11 PCO_GetVersionInfoSC2_Cam

Description Returns version information about the dll, e.g. sc2_cam.dll with version 2.14 Build 2234.

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetVersionInfoSC2_Cam (

char* pszName, //out

int iNameLength, //in

char* pszPath, //out

int iPathLength, //in

int* piMajor, //out

int* piMinor, //out

int* piBuild //out

);

Parameter Name Type Description

pszName char* Pointer to a character array to receive the module name, must not

be NULL.

iNameLength int Length of pszName array in bytes, usually _MAX_PATH.

pszPath char* Pointer to a character array to receive the module path. Can be

NULL.

iPathLength int Length of pszPath array in bytes, usually _MAX_PATH.

piMajor int* Integer pointer to receive the major version number, e.g. ,2’. Can

be NULL.

piMinor int* Integer pointer to receive the minor version number, e.g. ,14’. Can

be NULL.

piBuild int* Integer pointer to receive the build number, e.g. ,2234’. Can be

NULL.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 27

2.1.12 PCO_CheckDeviceAvailability

Description This function is used to check if the connection to a previously opened camera is still valid.

Functionality is only supported for interfaces with HotPlug capability like USB, GigE or FireWire. If

a device is connected or disconnected from a HotPlug capable bus system, the device manager

invokes a bus reset call on the bus and afterwards starts a new enumeration. If enumeration is

finished, a DEVICE_CHANGE message is broadcasted to all applications.

Supported

camera type(s)

Interface dependent

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_CheckDeviceAvailability (

HANDLE ph, //in

WORD wNum //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device

wNum WORD Number of camera which should be checked for availability at a distinct

interface. The interface type to check is derived from the one passed in

handle

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 28

2.1.13 PCO_GetDeviceStatus

Description Gets the DeviceAvailability and, for FireWire cameras, the generation count.

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetDeviceStatus (

HANDLE ph, //in

WORD wNum, //in

DWORD* dwStatus, //out

WORD wStatusLen //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera

wNum WORD Current number of the device to check

dwStatus DWORD* Pointer to an array with at least 1 DWORD to get the device status

• dwStatus[0]

– 0x80000000: Device is available

– 0x00000000: Not available

• dwStatus[1] (in case of FireWire): Generation count (maybe

different data with other media)

wStatusLen WORD WORD variable to indicate the length of the dwStatus array

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 29

2.2 Camera Description

Because different sensors (CCD, CMOS, sCMOS) are used in the different camera models, each

camera has its own description. This description should be read out shortly after access to

the camera is established. In the description general limits for all sensor related settings and

bitfields for available options of the camera are given. This set of information can be used to

validate the input parameter for commands that change camera settings, before they are sent

to the camera. The dwGeneralCapsDESC1 and dwGeneralCapsDESC2 bitfields in the PCO_-

Description Structure can be used to seewhat options are supported from the connected camera.

Supported options may vary with different camera types and also between different firmware

versions of one camera type.

2.2.1 PCO_GetCameraDescription

Description Sensor and camera specific description is queried. In the returned PCO_Description Structure

limits for all sensor related settings and bitfields for available options of the camera are given.

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetCameraDescription (

HANDLE ph, //in

PCO_Description* strDescription //in,out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device

strDescription PCO_Description* Pointer to a PCO_Description Structure:

• On input the wSize parameter of this

structure must be filled with the correct

structure size in bytes

• On output the structure is filled with the

requested information from the camera

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

Example see PCO_SetSensorStruct

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 30

2.2.2 PCO_GetCameraDescriptionEx

Description Any of the available sensor and camera specific description can be queried. With input parameter

wType the returned description structure can be selected. PCODescriptionEx is a generic structure

which must be cast to/from the queried structure. The wSize parameter must be filled with the

correct value for the requested structure. This function was introduced due to the size limitation

of the standard camera descriptor and the need for describing additional features.

Supported

camera type(s)

All cameras

Descriptor

dependency

dwGeneralCapsDESC1: ENHANCED_DESCRIPTOR_2

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetCameraDescriptionEx (

HANDLE ph, //in

PCO_DescriptionEx* strDescription, //in,out

WORD wType //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera

device

strDescEx PCO_DescriptionEx* Pointer to anyPCO_Description Structure

typecasted to PCO_DescriptionEx* :

• On input the wSize parameter of

this structure must be filled with the

correct structure size in Bytes

• On output the structure is filled with

the requested information from the

camera

wPatternTypeDESC WORD Type of color pattern:

• 0x0000 = monochrome

• 0x0001 = [RGB Bayer Pattern]

wType WORD WORD variable to select the returned

descriptor:

• 0x0000 = PCO_Description

• 0x0001 = PCO_Description2

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 31

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

Example see PCO_SetSensorStruct

2.2.2.1 PCO_Description Structure

Name Type Description

wSize WORD Size of this structure.

wSensorTypeDESC WORD Image sensor type, see table Sensor Type Codes.

wSensorSubTypeDESC WORD Image sensor subtype.

wMaxHorzResStdDESC WORD Maximal horizontal resolution in pixels for standard

format.

wMaxVertResStdDESC WORD Maximal vertical resolution in pixels for standard

format.

wMaxHorzResExtDESC WORD Maximal horizontal resolution in pixels for extended

format.

wMaxVertResExtDESC WORD Maximal vertical resolution in pixels for extended

format.

wDynResDESC WORD Dynamic resolution in bits/pixel.

wMaxBinHorzDESC WORD Maximal horizontal binning value.

wBinHorzSteppingDESC WORD Stepping of horizontal binning:

• 0 = binary step (1, 2, 4, 8, 16...max.)

• 1 = linear step (1, 2, 3, 4, 5...max.)

wMaxBinVertDESC WORD Maximal vertical binning value.

wBinVertSteppingDESC WORD Stepping of vertical binning:

• 0 = binary step (1, 2, 4, 8, 16...max.)

• 1 = linear step (1, 2, 3, 4, 5...max.)

wRoiHorStepsDESC WORD Stepping of horizontal ROI in pixel (camera ROI

constraint).

• 0 = no ROI setting possible

• Others = camera ROI setting must always be a

multiple of this value (e.g. value = 10 -> wRoiX0

= 1, 11, 21, 31...)

Continued on next page

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 32

Continued from previous page

Name Type Description

wRoiVertStepsDESC WORD Stepping of vertical ROI in pixel (camera ROI

constraint).

• 0 = no ROI setting possible

• Others = camera ROI setting must always be a

multiple of this value (e.g. value = 2 -> wRoiY0 =

1, 3, 5, 7...)

wNumADCsDESC WORD Number of ADCs inside camera.

wMinSizeHorzDESC WORD Minimum size in pixels in horizontal direction.

wMinSizeVertDESC WORD Minimum size in pixels in vertical direction.

dwPixelRateDESC[4] DWORD List of available pixel rate frequencies:

• 0 = not valid

• Others = pixel rate frequency in Hz

Only values of this list can be set as pixel rate.

ZzdwDummy DWORD Reserved.

wConvFactDESC[4] WORD List of available conversion factors:

• 0 = not valid

• Others = Conversion factor * 100 in electrons/

count e.g. 100 = 1.0 electrons/ count, e.g. 610

= 6.1 electrons/ count

Only values of this list can be set as conversion factor.

sCoolingSetpoints[10] SHORT List of available cooling setpoints. List is only

valid when the COOLING_SETPOINTS flag in

dwGeneralCapsDESC1 is set. The value of

wNumCoolingSetpoints give the number of

valid entries in the list. If this list is valid only values

out of this list can be used as cooling setpoint.

ZZdwDummycv WORD Reserved.

wSoftRoiHorStepsDESC WORD Stepping of horizontal ROI in pixel (Software ROI

constraint). Value is only valid when Software ROI is

enabled. See PCO_EnableSoftROI:

• 0 = no ROI setting possible

• Others = ROI setting must always be a multiple

of this value (e.g. value = 2 -> wRoiX0 = 1, 3, 5...)

Continued on next page

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 33

Continued from previous page

Name Type Description

wSoftRoiVertStepsDESC WORD Stepping of vertical ROI in pixel (Software ROI

constraint). Value is only valid when Software ROI is

enabled. See PCO_EnableSoftROI:

• 0 = no ROI setting possible

• Others = ROI setting must always be a multiple

of this value (e.g. value = 2 -> wRoiX0 = 1, 3, 5...)

wIRDESC WORD Sensor option IR sensitivity. If option is available the

sensor can be switched to improved IR sensitivity: 0 =

IR sensitivity not available. 1 = IR sensitivity available.

dwMinDelayDESC DWORD Minimum delay time in ns (non IR sensitivity mode).

dwMaxDelayDESC DWORD Maximum delay time in ms (non IR sensitivity mode).

dwMinDelayStepDESC DWORD Stepping of delay time in ns (both IR sensitivity

modes).

dwMinExposDESC DWORD Minimum exposure time in ns (non IR sensitivity

mode).

dwMaxExposDESC DWORD Maximum exposure time in ms (non IR sensitivity

mode).

dwMinExposStepDESC DWORD Stepping of exposure time in ns (both IR sensitivity

modes).

dwMinDelayIRDESC DWORD Minimum delay time in ns (IR sensitivity mode).

dwMaxDelayIRDESC DWORD Maximum delay time in ms (IR sensitivity mode).

dwMinExposIRDESC DWORD Minimum exposure time in ns (IR sensitivity mode).

dwMaxExposIRDESC DWORD Maximum exposure time in ms (IR sensitivity mode).

wTimeTableDESC WORD Camera option time table. If option is available the

camera can perform a timetable with several delay/

exposure time pairs:

• 0 = time table not available

• 1 = time table available

wDoubleImageDESC WORD Camera option double image mode. If option is

available, the camera can perform a double image with

a short interleave time between exposures:

• 0 = double mode not available

• 1 = double mode available

sMinCoolSetDESC SHORT Minimum cooling setpoint in °C (if all setpoints are 0,

then cooling is not available).

sMaxCoolSetDESC SHORT Maximum cooling setpoint in °C (if all setpoints are 0,

then cooling is not available).

sDefaultCoolSetDESC SHORT Default cooling setpoint in °C (if all setpoints are 0, then

cooling is not available).

Continued on next page

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 34

Continued from previous page

Name Type Description

wPowerDownModeDESC WORD Camera option power down mode. If option is

available, the camera can switch the sensor into power

down mode for reduced dark current during long

exposure times:

• 0 = power down not available

• 1 = power down available

wOffsetRegulationDESC WORD Camera option offsett regulation. If option is available,

the camera can perform an automatic offset regulation

using the reference pixels of the sensor:

• 0 = offset regulation not available

• 1 = offset regulation available

wColorPatternDESC WORD Description of the color pattern of the sensor; Each

of the four nibbles is describing the location and

color of the color sensor. (see table Color Pattern

Description (2x2 matrix)).

wPatternTypeDESC WORD Type of color pattern:

• 0x0000 = [RGB Bayer Pattern]

wDummy1 WORD Reserved.

wDummy2 WORD Reserved.

wNumCoolingSetpoints WORD The number of valid entries in the

sCoolingSetpoints list.

dwGeneralCapsDESC1 DWORD General capability bit field describing special

features and constraints of the camera (see table

GeneralCaps1-Bits).

dwGeneralCapsDESC2 DWORD Advanced capability bit field describing special

features and constraints of the camera.

dwExtSyncFrequency[4] DWORD Predefined values for external sync mode. Only values

of this list can be used as external frequency.

dwGeneralCapsDESC3 DWORD Advanced capability bit field describing special

features and constraints of the camera (see table

GeneralCaps1-Bits).

dwGeneralCapsDESC4 DWORD Advanced capability bit field describing special

features and constraints of the camera.

ZzdwDummy DWORD Reserved for future use.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 35

2.2.2.2 Color Pattern Description (2x2 matrix)

The Color Pattern of the sensor is declared by the four nibbles (4 bit each) of the

WORD wColorPatternDESC. Each nibble holds the value of the corresponding color. The Color

Pattern description is necessary for determining the color of the upper left corner of the image

readout from a color sensor in full resolution. With this value the correct demosaicing algorithm

can be selected. If vertical and/or horizontal ROI is used and ROI settings are not a multiple of 2,

the correct demosaicing algorithm must be calculated for the current ROI offsets.

Color defines for RGB Bayer Pattern:

• RED = 0x1

• GREEN (RED LINE) = 0x2

• GREEN (BLUE LINE) = 0x3

• BLUE = 0x4

The four nibbles are arranged in the following way:

For the sample this would result in:

0x4321 (Nibble4: BLUE, Nibble3: GREENB, Nibble2: GREENR, Nibble1: RED)

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 36

2.2.2.3 Sensor Type Codes

Sony Sensor Code Sensor Code Sensor Code

ICX285AL 0x0010 ICX274AL 0x0030 ICX414AL 0x0050

ICX285AK 0x0011 ICX274AK 0x0031 ICX414AK 0x0051

ICX263AL 0x0020 ICX407AL 0x0040 ICX407BLA 0x0060

ICX263AK 0x0021 ICX407AK 0x0041

Kodak Sensor Code Sensor Code Sensor Code

KAI2000M 0x0110 KAI4010M 0x0130 KAI4020M 0x0140

KAI2000CM 0x0111 KAI4010CM 0x0131 KAI4020CM 0x0141

KAI2001M 0x0120 KAI4011M 0x0132 KAI4021M 0x0142

KAI2001CM 0x0121 KAI4011CM 0x0133 KAI4021CM 0x0143

KAI2002M 0x0122 KAI4022M 0x0144

KAI2002CM 0x0123 KAI4022CM 0x0145

KAI11000M 0x0150 KAI11002M 0x0152

KAI11000CM 0x0151 KAI11002CM 0x0153

KAI16000AXA 0x0160 KAI16000CXA 0x0161

sCMOS Sensor Code Sensor Code

CIS2051_V1_FI_BW 0x2000 CIS1042_V1_FI_BW 0x2002

CIS2051_V1_FI_COL 0x2001 CIS2051_V1_BI_BW 0x2010

GPIXEL_GSENSE2020_BW 0x5000 GPIXEL_GSENSE2020_COL 0x5001

GPIXEL_GSENSE2020BI_BW 0x5002 GPIXEL_GSENSE5130_BW 0x5004

GPIXEL_GSENSE5130_COL 0x5005 GPIXEL_GMAX0505_BW 0x5006

GPIXEL_GMAX0505_COL 0x5007

Others Sensor Code Sensor Code

MV13BW 0x1010 MV13COL 0x1011

TC285SPD 0x2120

CYPRESS_RR_V1_BW 0x3000 CYPRESS_RR_V1_COL 0x3001

QMFLIM_V2B_BW 0x4000

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 37

2.2.2.4 GeneralCaps1-Bits

Flag name Bitmask value Description

NOISE_FILTER 0x00000001 Noise filter is available

HOTPIX_FILTER 0x00000002 Hot pixel filter is available

HOTPIX_ONLY_WITH_NOISE_FILTER 0x00000004 Hot pixel correction does not

work without noise filter

TIMESTAMP_ASCII_ONLY 0x00000008 Time stamp without binary is

available

DATAFORMAT2X12 0x00000010 Camera Link data format

2x12bit available

RECORD_STOP 0x00000020 Record stop event mode is

available

HOT_PIXEL_CORRECTION 0x00000040 Hot pixel correction is available

NO_EXTEXPCTRL 0x00000080 External exposure control is not

available

NO_TIMESTAMP 0x00000100 Time stamp is not available

NO_ACQUIREMODE 0x00000200 Acquire mode is not available

DATAFORMAT4X16 0x00000400 Camera Link data format

4x16Bit available

DATAFORMAT5X16 0x00000800 Camera Link data format

5x16Bit available

NO_RECORDER 0x00001000 No internal recorder is available

FAST_TIMING 0x00002000 Fast timing mode is available

METADATA 0x00004000 Meta Data is available

SETFRAMERATE_ENABLED 0x00008000 Set/GetFrameRate available

CDI_MODE 0x00010000 Correlated double image mode

is available

CCM 0x00020000 Internal color correction matrix

is available

EXTERNAL_SYNC 0x00040000 Trigger mode external sync is

available

NO_GLOBAL_SHUTTER 0x00080000 Global shutter operation mode

not available

GLOBAL_RESET_MODE 0x00100000 Global reset operation mode not

available

EXT_ACQUIRE 0x00200000 Extended acquire is available

FAN__LED_CONTROL 0x00400000 Camera supports fan and LED

control command

ROI_VERT_SYMM_TO_HORZ_AXIS 0x00800000 Vertical ROI must be

symmetrical to horizontal

axis (camera ROI constraint)

ROI_HORZ_SYMM_TO_VERT_AXIS 0x01000000 Horizontal ROI must be

symmetrical to vertical axis

(camera ROI constraint)

Continued on next page

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 38

Continued from previous page

Flag name Bitmask value Description

COOLING_SETPOINTS 0x02000000 Table with predefined cooling

setpoints is available.

ENHANCED_DESCRIPTOR_INTENSIFIED 0x20000000 Intensified description is

available

HW_IO_SIGNAL_DESCRIPTOR 0x40000000 Hardware IO description is

available

ENHANCED_DESCRIPTOR_2 0x80000000 Enhanced description 2 is

available

All flags are also defined in header file sc2_defs.h. To get the defined names of the flags preceed

the above Flag name with ”GENERALCAPS1_”.

E.g. flag NOISE_FILTER is defined as GENERALCAPS1_NOISE_FILTER.

2.2.2.5 GeneralCaps3-Bits

Flag name Bitmask value Description

HDSDI_1G5 0x00000001 HDSDI interface with1.5 Gbit datarate available

HDSDI_3G 0x00000002 HDSDI interface with 3 Gbit datarate available

IRIG_B_UNMODULATED 0x00000004 Unmodulated IRIG B can be evaluated

IRIG_B_MODULATED 0x00000008 Modulated IRIG B can be evaluated

CAMERA_SYNC 0x00000010 Camera Sync mode is available

HS_READOUT_MODE 0x00000020 Fast Sensor readout is available

EXT_SYNC_1HZ_MODE 0x00000040 In trigger mode [external synchronized] multiples

of 1Hz can be evaluated

All flags are also defined in header file sc2_defs.h. To get the defined names of the flags preceed

the above Flag name with ”GENERALCAPS3_”.

E.g. flag HDSDI_1G5 is defined as GENERALCAPS3_HDSDI_1G5.

2.2.2.6 PCO_Description2 Structure

Name Type Description

wSize WORD Size of this structure

ZZwAlignDummy1 WORD Reserved

dwMinPeriodicalTimeDESC2 DWORD Minimum periodical time in ns

dwMaxPeriodicalTimeDESC2 DWORD Maximum periodical time in ms

dwMinPeriodicalConditionDESC2 DWORD Minimum periodical time condition.

Periodical time – exposure time must not

be smaller than ‘min per additional’

dwMaxNumberOfExposuresDESC2 DWORD Maximum number of exposures in one

frame

lMinMonitorSignalOffsetDESC2 LONG Minimum monitor signal offset time in ns

Continued on next page

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 39

Continued from previous page

Name Type Description

dwMaxMonitorSignalOffsetDESC2 DWORD Maximum monitor signal offset. Maximum

negative monitor signal offset in ns

dwMinPeriodicalStepDESC2 DWORD Minimum periodical time step in ns

dwStartTimeDelayDESC2 DWORD Constant maximum value for monitor signal

offset in nsec in case of delay = 0

dwMinMonitorStepDESC2 DWORD Minimum monitor step time in ns

dwMinDelayModDESC2 DWORD Minimum delay time in ns in modulate

mode

dwMaxDelayModDESC2 DWORD Maximum delay time in ms in modulate

mode

dwMinDelayStepModDESC2 DWORD Maximum delay time in ms in modulate

mode

dwMinExposureModDESC2 DWORD Minimum exposure time in ns in modulate

mode

dwMaxExposureModDESC2 DWORD Maximum exposure time in ms in modulate

mode

dwMinExposureStepModDESC2 DWORD Minimum exposure time step in ns in

modulate mode

dwModulateCapsDESC2 DWORD Modulate capability bit field describing the

availability of optional functionality (see

table ModulateCaps-Bits).

dwReserved DWORD Reserved

ZZdwDummy DWORD Reserved

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 40

2.2.2.7 ModulateCaps-Bits

Flag name Value Description

MODULATE 0x00000001 Modulate is available

2.3 General Camera Status

The general status group contains functions to get access to information on the type ofcamera

connected and if the camera is operating in good condition. Additionally there are functions to set

the camera to a default operating state.

2.3.1 PCO_GetGeneral

Description General information is queried from the camera and the variables of the PCO_General Structure

are filled with this information. This function is a combined version of the following functions

that request information about camera type, hardware/firmware version, serial number, current

temperatures and camera status.

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetGeneral (

HANDLE ph, //in

PCO_General* strGeneral //in,out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

strGeneral PCO_General* Pointer to a PCO_General Structure:

• On input the wSize parameter of this structure and

also of all nested structures must be filled with the

correct structure size in bytes

• On output the structure is filled with the requested

information of the camera

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 41

Example
HANDLE hCamera;

...

PCO_General strGeneral;

strGeneral.wSize = sizeof(PCO_General);

int err = PCO_GetGeneral(hCamera, &strGeneral);

...

2.3.1.1 PCO_General Structure

Name Type Description

wSize WORD Size of this structure

ZZwAlignDummy1 WORD Reserved

strCamType PCO_CameraType See PCO_GetCameraType

dwCamHealthWarnings DWORD Bitmask of warnings in camera system

dwCamHealthErrors DWORD Bitmask of errors in camera system

dwCamHealthStatus DWORD Bitmask of camera system status

sCCDTemperature SHORT Temperature of image sensor in tenth

of a degree. e.g. 100 = 10.0 °C

sCamTemperature SHORT Temperature inside camera housing

sPowerSupplyTemperature SHORT Temperature of additional device (e.g.

power supply)

ZZwDummy[] WORD Reserved

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 42

2.3.2 PCO_GetCameraType

Description This function retrieves the following parameters of the camera: camera type code, hardware/firmware

version, serial number and interface type.

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetCameraType (

HANDLE ph, //in

PCO_CameraType* strCamType //in, out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

strCamType PCO_CameraType* Pointer to a PCO_CameraType Structure:

• On input the wSize parameter of this structure

must be filled with the correct structure size in

bytes

• On output the structure is filled with the requested

information from the camera

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

Example
HANDLE hCamera;

...

PCO_CameraType strCamType;

int err = PCO_GetCameraType(hCamera, &strCamType);

...

2.3.2.1 PCO_CameraType Structure

Name Type Description

wSize WORD Size of this structure

wCamType WORD Camera type code, see table 2.3.2.2

wCamSubType WORD Camera subtype code

ZZwAlignDummy1 WORD Reserved

Continued on next page

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 43

Continued from previous page

Name Type Description

dwSerialNumber DWORD Serial number of the camera

dwHWVersion DWORD Global hardware version. The most significant

WORD is the version number and the lower

significant WORD is the revision number. (e.g. 0

x00020001 = version revision 2.01)

dwFWVersion DWORD Global firmware version (deprecated). The most

significant WORD is the version number and the

lower significant WORD is the revision number.

The variable is not valid in newer firmware. The

firmware version structure must be used instead

to get reliable information

wInterfaceType WORD Interface type code, see table Interface type

codes

strHardwareVersion PCO_HW_Vers Hardware versions of installed devices. An array

of up to 10 hardware info structures. One structure

for each existing device.

strFirmwareVersion PCO_HW_Vers Firmware versions of all devices. An array of up to

10 firmware info structures. One structure for each

existing device. In case more than 10 devices

exist in the camera PCO_GetFirmwareInfo must

be used to retrieve the structures of the additional

devices.

ZZwDummy[] WORD Reserved

2.3.2.2 Camera type codes

Camera Value Camera Value

pco.edge 5.5 CL 0x1300 pco.edge 4.2 CL 0x1302

pco.edge GL 0x1310 pco.edge USB3 0x1320

pco.edge CLHS 0x1340 pco.edge MT 0x1304

pco.dimax 0x1000 pco.dimax_TV 0x1010

pco.dimax CS 0x1020 pco.flim 0x1400

pco.panda 0x1500 pco.pixelfly usb 0x0800

pco.1200HS 0x0100 pco.1300 0x0200

pco.1600 0x0220 pco.2000 0x0240

pco.4000 0x0260 pco.1400 0x0830

pco.flim 0x1400 pco.dimax cs1 0x417F

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 44

2.3.2.3 Interface type codes

Interface type Value Interface type Value

FireWire 0x0001 Camera Link 0x0002

USB 2.0 0x0003 GigE 0x0004

Serial Interface 0x0005 USB 3.0 0x0006

CLHS 0x0007

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 45

2.3.3 PCO_GetCameraHealthStatus

Description ThePCO_GetCameraHealthStatus function retrieves information about the current camera status.

The returned parameters are presented as a bit field, where each bit describes a distinct camera

condition. Cleared bits in the bitfield indicate that the particular condition is not valid, set bits show

valid (error, warning, status) conditions. In case an error condition is recognized the hardware

might get damaged if the camera continues to operate. Therefore the application should report

the error condition to the user and prompt him to switch off the camera as soon as possible. If a

warning condition is recognized, the operation of the camera can continue, but the image quality

might suffer. The status bits give information about the current camera state. It can be determined

if the camera is in the default state (power up), if a PCO_ArmCamera was successfully executed

and if camera is currently recording. It is recommended to call this function frequently (e.g. every

5s or after calling PCO_ArmCamera) in order to recognize camera internal problems. This helps

to prevent camera hardware damage.

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetCameraHealthStatus (

HANDLE ph, //in

DWORD* dwWarn, //out

DWORD* dwErr, //out

DWORD* dwStatus //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

dwWarn DWORD* Pointer to a DWORD variable to get warning bit field (seeWarning bits).

dwErr DWORD* Pointer to a DWORD variable to get error bit field (see Error bits).

dwStatus DWORD* Pointer to a DWORD variable to get the status bit field (see Status bits).

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

Example
HANDLE hCamera;

...

DWORD dwWarn, DWORD dwErr, DWORD dwStatus

int err = PCO_GetCameraHealthStatus(hCamera, &dwWarn, &dwErr, &←↩
dwStatus);

...

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 46

2.3.3.1 Warning bits

Value Description

0x00000001 Power supply voltage near limits.

0x00000002 Power supply temperature near limit.

0x00000004 Camera temperature near limit (board temperature / FPGA temperature).

0x00000008 Image sensor temperature near limit (for cooled camera versions only).

0x00000010 External battery nearly discharged.

0x00000020 Offset regulation range near limit.

2.3.3.2 Error bits

Value Description

0x00000001 Power supply voltage out of limits.

0x00000002 Power supply temperature out of limit.

0x00000004 Camera temperature out of limit (board temperature / FPGA temperature).

0x00000008 Image sensor temperature out of limit (for cooled camera versions only).

0x00000010 External battery completely discharged.

0x00010000 Camera interface failure.

0x00020000 Camera RAM module failure.

0x00040000 Camera main board failure.

0x00080000 Camera head board failure.

2.3.3.3 Status bits

Name Description

0x00000001 Default state:

• Bit set: No settings changed, camera is in default state

• Bit cleared: Settings were changed since power up or reset

0x00000002 Settings valid:

• Bit set: Settings are valid. Last PCO_ArmCamera was successful and

no settings were changed since then (except exposure time)

• Bit cleared: Settings were changed but not yet checked and accepted by

PCO_ArmCamera command

0x00000004 Recording state:

• Bit set: Recording state is on

• Bit cleared: Recording state is off

Continued on next page

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 47

Continued from previous page

Name Description

0x00000008 Sensor readout state:

• Bit set: Sensor data readout is running

• Bit cleared: No sensor data readout at the moment

0x00000010 Frame rate state:

• Bit set: Valid image timing was set from PCO_SetFrameRate call

• Bit cleared: Valid image timing was set from PCO_-

SetDelayExposureTime call

0x00000020 State of trigger signal for sequence stop:

• Bit set: A trigger signal for stopping the sequence has already arrived and

the camera does capture the additional frames of the sequence

• Bit cleared: Sequence trigger cleared

0x00000040 Camera locked to external sync:

• Bit set: The internal PLL is locked to the external sync signal

• Bit cleared: No external sync signal or signal not locked

0x00000080 Battery status:

• Bit set: A rechargable battery pack is connected

• Bit cleared: No battery available

0x00000100 Power save (only valid if battery is connected):

• Bit set: Camera is in power save mode. Normal operation is not possible,

but recorded image data is maintained as long as possible. To readout

the data the camera must be connected to the normal power supply

• Bit cleared: Camera is in normal operation mode

0x00000200 Power save left:

• Bit set: Camera has been in power save mode and power was

reconnected. Image data from last recording can be readout, but no other

settings are valid

• Bit cleared: Camera is in normal operation mode

Continued on next page

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 48

Continued from previous page

Name Description

0x00000400 Camera locked to IRIG time code generator:

• Bit set: An IRIG time code signal is connected to the appropriate input

and the camera is locked to this signal. Camera timestamp information

(date and time) is adopted to the external time code

• Bit cleared: No IRIG information available

0x80000000 Reserved.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 49

2.3.4 PCO_GetTemperature

Description This function retrieves the current temperatures in °C of the imaging sensor, camera and additional

devices e.g. power supply. The image sensor and the additional device temperature are not

available for all cameras. In this case the following values will be returned:

Image sensor temperature missing: sCCDTemp = 0x8000

Additional device temperature missing: sPowTemp = 0x0000

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetTemperature (

HANDLE ph, //in

SHORT* sCCDTemp, //out

SHORT* sCamTemp, //out

SHORT* sPowTemp //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

sCCDTemp SHORT* Pointer to a SHORT variable to get the image sensor temperature in

tenth of a degree. e.g. 100 = 10.0 °C.

sCamTemp SHORT* Pointer to a SHORT variable to get the internal temperature of the

camera in °C.

sPowTemp SHORT* Pointer to a SHORT variable to get the temperature of additional devices

(e.g. power supply) in °C.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

Example see PCO_GetCameraHealthStatus

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 50

2.3.5 PCO_GetInfoString

Description This function retrieves some information about the camera, e.g. sensor name. A zero terminated

ASCII string will be returned in the provided array. This array must be large enough to hold the

complete string and the termination value, if not, an error will be returned. At most 500 bytes will

be returned from the camera. If a specific info type is not available for the camera an error will be

returned. Windows only.

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetInfoString (

HANDLE ph, //in

DWORD dwinfotype, //in

char* buf_in, //out

WORD size_in //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

dwinfotype DWORD Specifies the camera information to inquire, see table InfoType.

buf_in char* Pointer to a character array. The requested information, as ASCII

string.

size_in WORD Size of the character array, which is passed in.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

2.3.5.1 InfoType

Value Name Description

0x00000000 INFO_STRING_PCO_INTERFACE Camera name and interface

information.

0x00000001 INFO_STRING_CAMERA Camera name.

0x00000002 INFO_STRING_SENSOR Sensor name.

0x00000003 INFO_STRING_PCO_MATERIALNUMBER Production number.

0x00000004 INFO_STRING_BUILD Firmware build number and date.

0x00000005 INFO_STRING_PCO_INCLUDE Firmware build include revision.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 51

2.3.6 PCO_GetCameraName

Description This function retrieves the name of the camera. A zero terminated ASCII string will be returned in

the provided array. This array must be large enough to hold the complete string and the termination

value, if not, an error will be returned. At most 40 bytes will be returned from the camera.

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetCameraName (

HANDLE ph, //in

char* szCameraName, //out

WORD wSZCameraNameLen //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

szCameraName char* Pointer to a character array (40 byte). The camera name, as

ASCII string.

wSZCameraNameLen WORD Size of the array szCameraName, which has passed in.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 52

2.3.7 PCO_GetFirmwareInfo

Description Query firmware versions of all devices in the camera such asmain microprocessor, main FPGA and

coprocessors of the interface boards. Because the number of devices can exceed the number of

information fields of the PCO_FW_Vers structure additional blocks of information can be requested

using the wDeviceBlock parameter. The first call should bemadewith wDeviceBlock parameter

set to 0. On return the wDeviceNum parameter of the PCO_FW_Vers will be filled with the number

of all installed devices in the camera. Up to this number, each Device structure will contain

the firmware information for a particular device. Further calls with increasing wDeviceBlock

parameter might be necessary to get all available firmware versions.

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetFirmwareInfo (

HANDLE ph, //in

WORD wDeviceBlock, //in

PCO_FW_Vers* pstrFirmWareVersion //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wDeviceBlock WORD Address a block of information; 0 gets the first

10 devices.

pstrFirmWareVersion PCO_FW_Vers* Pointer to a PCO_FW_Vers structure. On

output the structure is filled with following

information:

• pstrFirmWareVersion.wDeviceNum

: Number of available devices in the

camera

• pstrFirmWareVersion.Device

[0...9]: An array of 10 PCO_SC2_-

Firmware_DESC Structure filled with

the version information of available

devices

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 53

2.3.7.1 PCO_SC2_Firmware_DESC Structure

Name Type Description

szName[16] char The device name, as ASCII string 16 bytes long.

bMinorRev BYTE The minor revison of the device.

bMajorRev BYTE The major revison of the device.

wVariant WORD The variant of the device.

ZZwDummy[22] WORD Reserved.

2.3.8 PCO_GetColorCorrectionMatrix

Description This function returns the color multiplier matrix from the camera. The color multiplier matrix can

be used to normalize the color values of a color camera to a color temperature of 6500k. The

color multiplier matrix is specific for each camera and is determined through a special calibration

procedure.

Supported

camera type(s)

pco.dimax, pco.edge, pco.pixelfly usb

Descriptor

dependency

dwGeneralCapsDESC1: CCM

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetColorCorrectionMatrix (

HANDLE ph, //in

double* pdMatrix //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

pdMatrix double* Pointer to an array of nine double values. The array is arranged as a

3x3 matrix containing the color coefficients.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 54

2.3.9 PCO_GetDSNUAdjustMode

Description Gets the camera internal DSNU adjustment mode.

Supported

camera type(s)

pco.dimax

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetDSNUAdjustMode (

HANDLE ph, //in

WORD* wDSNUAdjustMode, //out

WORD* wReserved //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera

wDSNUAdjustMode WORD* Pointer to a WORD to get the DSNU adjust mode:

• 0x0000: no DSNU correction

• 0x0001: automatic DSNU correction.

• 0x0002: manual DSNU correction.

wReserved WORD* Reserved (Nullpointer not allowed)

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 55

2.3.10 PCO_SetDSNUAdjustMode

Description Sets the camera internal DSNU adjustment mode.

Supported

camera type(s)

pco.dimax

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetDSNUAdjustMode (

HANDLE ph, //in

WORD wDSNUAdjustMode, //in

WORD wReserved //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera

wDSNUAdjustMode WORD WORD variable to set the DSNU adjust mode:

• 0x0000: no DSNU correction

• 0x0001: automatic DSNU correction.

• 0x0002: manual DSNU correction.

wReserved WORD Reserved, set to zero

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 56

2.3.11 PCO_InitDSNUAdjustment

Description Sets the camera internal DSNU adjustment mode and starts the camera internal DSNU adjustment

if set to manual.

Supported

camera type(s)

pco.dimax

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_InitDSNUAdjustment (

HANDLE ph, //in

WORD wDSNUAdjustMode, //in

WORD wReserved //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera

wDSNUAdjustMode WORD WORD variable to set the DSNU adjust mode:

• 0x0000: no DSNU correction

• 0x0001: automatic DSNU correction.

• 0x0002: manual DSNU correction.

wReserved WORD Reserved, set to zero

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 57

2.4 General Camera Control

2.4.1 PCO_ArmCamera

Description This function arms the camera, i.e. prepares the camera for a recording. All configurations and

settings made up to this moment are accepted, validated and the internal settings of the camera

are updated. If the arm was successful the camera state is changed to [armed] and the camera is

able to start image recording immediately, when Recording State is set to [run].

The command will be rejected, if Recording State is [run], see PCO_GetRecordingState.

On power up the camera is in state [not armed] and Recording State [stop]. Camera arm state

is changed to [not armed], when settings are changed, with the following exception: Camera arm

state is not changed, when settings related to exposure time will be done during Recording State

[run].

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_ArmCamera (

HANDLE ph //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 58

2.4.2 PCO_CamLinkSetImageParameters (obsolete)

Description This function is marked as obsolete and will be removed in future releases of the SDK. Function

PCO_SetImageParameters should be used instead. This function sets the image parameters for

internal allocated resources. While using Camera Link, Camera Link HS (CLHS) or GigE interface

this function must be called, before an image transfer is started from the camera and the image

size has been changed since the last PCO_ArmCamera call. Because for all other interfaces this

is a dummy call, which always returns PCO_NOERROR, this function can remain in the program,

regardless which camera interface is used. The size parameters are adapted internally, if Meta

Data mode is enabled (see PCO_SetMetaDataMode). Windows only.

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_CamLinkSetImageParameters (

HANDLE ph, //in

WORD wxres, //in

WORD wyres //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wxres WORD Current horizontal resolution of the image to be transferred.

wyres WORD Current vertical resolution of the image to be transferred.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 59

2.4.3 PCO_SetImageParameters

Description This function sets the image parameters for internal allocated resources. This function must be

called before an image transfer is started from the camera and the image size has been changed

since the last PCO_ArmCamera call. This must also be called after setting a new segment for

image readout of the camera internal memory (CamRam).

The size parameters are adapted internally, if Meta Data mode or Soft ROI are enabled.

In case Soft ROI (see PCO_EnableSoftROI) is in use, dwFlags parameter must be set according

to the subsequent program sequence, to ensure that the correct Soft ROI parameters are used.

If next images will be transferred while the camera is recording, flag

IMAGEPARAMETERS_READ_WHILE_RECORDING must be set. If next action is to readout images

from the camera internal memory, flag IMAGEPARAMETERS_READ_FROM_SEGMENTSmust be set.

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetImageParameters (

HANDLE ph, //in

WORD wxres, //in

WORD wyres, //in

DWORD dwflags, //in

void* param, //in

int ilen //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wxres WORD Current horizontal resolution of the image to be transferred.

wyres WORD Current vertical resolution of the image to be transferred.

dwflags DWORD Soft ROI action bit field , see table Image parameter bits. Only valid if

PCO_EnableSoftROI is enabled.

param void* Reserved.

ilen int Reserved.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 60

2.4.3.1 Image parameter bits

Flag name Value Description

IMAGEPARAMETERS_READ_WHILE_RECORDING 0x00000001 Next image transfers will

be done from a recording

camera.

IMAGEPARAMETERS_READ_FROM_SEGMENTS 0x00000002 Next image transfers will

be done from the camera

internal memory.

Bit2-31 Reserved.

2.4.4 PCO_ResetSettingsToDefault

Description This function can be used to reset all camera settings to its default values. This function is also

executed during a power-up sequence. The cameramust be stopped before calling this command.

Default settings are slightly different for all cameras.

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_ResetSettingsToDefault (

HANDLE ph //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

Example see PCO_CloseCamera

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 61

2.4.4.1 Default settings

Setting Default

Sensor Format Standard

ROI Full resolution

Binning No binning

Pixel rate Depending on camera type

Gain Normal gain (if setting available due to sensor)

Double image mode Off

IR sensitivity Off (if setting available due to sensor)

Cooling setpoint Depending on camera type

ADC mode Using one ADC (if option available)

Exposure time Depending on camera type (10-20 ms)

Delay time 0

Trigger mode Auto trigger

Recording state Stopped

Memory segmentation Total memory allocated to first segment (if option available)

Storage mode Recorder Ring Buffer and Live View on

Acquire mode Auto

2.4.5 PCO_SetTimeouts

Description This function sets the internal timeout values for different tasks. Usually there is no need to change

these values.

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetTimeouts (

HANDLE ph, //in

void* buf_in, //in

unsigned int size_in //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

Continued on next page

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 62

Continued from previous page

Name Type Description

buf_in void* Pointer to an array of unsigned int values:

• buf_in[0] = command timeout in ms (A command

sequence will be aborted and a timout error returned, if

there is no response from the camera within the command

timeout value)

• buf_in[1] = image timeout in ms (An image request

will be aborted and a timout error returned, if no image

is transferred from the camera within the image timeout

value. Only valid for the PCO_GetImageEx command)

• buf_in[2] = transfer timeout in ms (Specifies the time

to hold transfer resources. While image sequences are

running transfer resources are allocated in some of the

driver layer. To enable faster start time for the next

image sequence these resources are held the set ”transfer

timeout” time, after the last image of the sequence is

transferred. PCO_CancelImages always deallocates the

hold resources).

size_in unsigned int Number of valid values in the array in bytes.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 63

2.4.6 PCO_RebootCamera

Description This function will reboot the camera. The function will return immediately and the reboot process

in the camera is started. After calling this command the handle to this camera should be closed

with PCO_CloseCamera.

When reboot is finished (approximately after 6 to 10 seconds, up to 40 seconds for cameras

with GigE interface) the camera can be reopened with a PCO_OpenCameraEx call. The reboot

command is used during firmware update and is necessary when camera setup is changed.

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_RebootCamera (

HANDLE ph //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 64

2.4.7 PCO_GetCameraSetup

Description Command can be used to get the shutter mode of a pco.edge.This function is used to query the

current operation mode of the camera. Some cameras can work at different operation modes with

different descriptor settings.

Supported

camera type(s)

pco.edge

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetCameraSetup (

HANDLE ph, //in

WORD* wType, //in, out

DWORD* dwSetup, //out

WORD* wLen //in, out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wType WORD* Pointer to a WORD variable to receive the current setup type:

• On input this variable must be set to zero

• On output the variable indicates the current available setup type,

which must be used in the PCO_SetCameraSetup function

dwSetup DWORD* Pointer to a DWORD array with 4 DWORDs:

• On output the fields are filled with the available information

wLen WORD* Pointer to a WORD variable:

• On input to indicate the length of the dwSetup array in DWORDs.

Usually this parameter is set to 4

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 65

2.4.7.1 pco.edge dwSetup[0]

Value Type Description

0x00000001 PCO_EDGE_SETUP_ROLLING_SHUTTER Camera is in rolling shutter

operation mode.

0x00000002 PCO_EDGE_SETUP_GLOBAL_SHUTTER Camera is in global shutter

operation mode.

0x00000004 PCO_EDGE_SETUP_GLOBAL_RESET Camera is in global reset operation

mode.

2.4.8 PCO_SetCameraSetup

Description Command can be used to set the shutter mode of a pco.edge.This function is used to set the

operation mode of the camera. If operation mode is changed, PCO_RebootCamera must be

called afterwards. It is recommended to set the command timeout to 2000 ms by calling PCO_-

SetTimeouts before changing the setup.

Supported

camera type(s)

pco.edge

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetCameraSetup (

HANDLE ph, //in

WORD wType, //in

DWORD* dwSetup, //in

WORD wLen //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wType WORD WORD to set the current setup type. Must be set to the value returned

from a previous PCO_GetCameraSetup call.

dwSetup DWORD* Pointer to a DWORD array with 4 DWORDs. For the pco.edge the values

from table pco.edge dwSetup[0] can be used.

wLen WORD WORD to indicate the the length of the dwSetup array in DWORDs.

Parameter

dependency

dwGeneralCapsDESC1: NO_GLOBAL_SHUTTER,GLOBAL_RESET_MODE

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 66

Example
DWORD m_dwSetup[4];

WORD m_wLen = sizeof(m_dwSetup)/sizeof(DWORD);

WORD m_wType = 0; // Set to zero initially

int ts[3] = { 2000, 3000, 250}; // command, image, channel ←↩
timeout

PCO_OpenCamera(&ph,0);

PCO_GetCameraSetup(ph, &m_wType, &m_dwSetup[0], &m_wLen);

m_dwSetup[0] = PCO_EDGE_SETUP_GLOBAL_SHUTTER;

PCO_SetTimeouts(ph, &ts[0], sizeof(ts));

PCO_SetCameraSetup(ph, m_wType, &m_dwSetup[0], m_wLen);

PCO_RebootCamera(ph);

PCO_CloseCamera(ph);

2.4.9 PCO_GetShutterMode

Description Gets the camera shutter mode by calling PCO_GetCameraSetup.

Not applicable to all cameras. See sc2_defs.h for valid flags: Defines for Get / Set Camera

Setup

Supported

camera type(s)

pco.edge

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetShutterMode (

HANDLE ph, //in

WORD* wShuttermode //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wShuttermode WORD* Pointer to a word to get the shutter mode

Parameter

dependency

dwGeneralCapsDESC1: NO_GLOBAL_SHUTTER,GLOBAL_RESET_MODE

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 67

2.4.10 PCO_SetShutterMode

Description Sets the camera setup structure (see camera specific structures), then reboots and closes the

camera. After a specified wait time (using sc2_cam.ini) the function call tries to re-open the

camera. Wait time is usually > 6s in order to give the camera time to boot.

It is mandatory to reload the camera descriptor after this call!!!!

Not applicable to all cameras. See sc2_defs.h for valid flags: Defines for Get / Set Camera

Setup

Supported

camera type(s)

pco.edge

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetShutterMode (

HANDLE ph, //in

WORD wShuttermode //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wShuttermode WORD WORD variable to set the shutter mode

Parameter

dependency

dwGeneralCapsDESC1: NO_GLOBAL_SHUTTER,GLOBAL_RESET_MODE

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 68

2.4.11 PCO_ControlCommandCall

Description This function issues a low level command to the camera. This call is part of most of the other calls.

Normally calling this function is not needed. It can be used to cover those camera commands that

are not implemented in regular SDK functions.

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_ControlCommandCall (

HANDLE ph, //in

void* buf_in, //in

unsigned int size_in, //in

void* buf_out, //out

unsigned int size_out //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

buf_in void* Pointer to a buffer that holds the camera command telegram.

size_in unsigned int Size of the input buffer in bytes.

buf_out void* Pointer to a buffer that holds the camera response telegram.

size_out unsigned int Size of the output buffer in bytes.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 69

2.4.12 PCO_GetFanControlParameters

Description This command gets the fan control mode and the current fan speed if available.

Supported

camera type(s)

pco.edge

Descriptor

dependency

dwGeneralCapsDESC1: GENERALCAPS1_FAN_LED_CONTROL

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetFanControlParameters (

HANDLE ph, //in

WORD* wMode, //out

WORD* wValue, //out

WORD* wReserved, //out

WORD wNumReserved //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera.

wMode WORD* WORD pointer to receive the current fan control mode setting:

• If mode is FAN_CONTROL_MODE_AUTO the camera

controls the fan speed

• If mode is FAN_CONTROL_MODE_USER the user controls

the fan speed

wValue WORD* WORD pointer to receive the current fan setting:

• Value ranges from 0...100

• 0 means off

• 100 is highest speed

wReserved WORD* WORD variable for future use (can be NULL).

wNumReserved WORD

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 70

2.4.13 PCO_SetFanControlParameters

Description ATTENTION!!! Use this function call only when you’re absolutely sure what you do! This command

sets the fan control mode and the current fan speed if available. Setting the fan speed to a low

value or off might expose the camera to overheating!

The specifications of image quality are only valid when you operate the camera with the defined

sensor temperature.

The camera will switch on the fan automatically before the camera is damaged due to overheating.

When you set the fan speed it is strongly recommended to call PCO_GetCameraHealthStatus

and to observe the temperatures of the camera using PCO_GetTemperature.

Disclaimer: It is the users’ responsibility to take care for the camera. PCO is not responsible for

a bricked camera! Take care and do not fry your device!

Supported

camera type(s)

pco.edge

Descriptor

dependency

dwGeneralCapsDESC1: GENERALCAPS1_FAN_LED_CONTROL

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetFanControlParameters (

HANDLE ph, //in

WORD wMode, //in

WORD wValue, //in

WORD wReserved //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera.

wMode WORD WORD variable to set the current fan control mode setting:

• If mode is FAN_CONTROL_MODE_AUTO the camera controls

the fan speed

• If mode is FAN_CONTROL_MODE_USER the user controls the

fan speed

wValue WORD WORD variable to set the current fan setting:

Value ranges from 1...100: 0 means off, 100 is highest speed

wReserved WORD WORD variable for future use (can be NULL).

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 71

2.5 Image Sensor

This function group can be used to get or set parameters regarding the image readout of the

imaging sensor.

If one parameter of these settings is changed in most cases also other parameters must be

changed to ensure that the validation of all settings during PCO_ArmCamera is successful.

Setting parameters in this group can only be done ifRecording State is [stop], seePCO_GetRecordingStruct.

2.5.1 PCO_GetSensorStruct

Description Sensor related information is queried from the camera and the variables of the PCO_Sensor

Structure are filled with this information. This function is a combined version of the functions that

request information about the installed imaging sensor and the current settings of sensor related

parameters like binning, ROI, pixel clock and others. For a detailed description of each parameter

see the functions in this chapter.

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetSensorStruct (

HANDLE ph, //in

PCO_Sensor* strSensor //in,out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

strSensor PCO_Sensor* Pointer to a PCO_Sensor Structure:

• On input the wSize parameter of this structure and also

of all nested structures must be filled with the correct

structure size in bytes

• On output the structure is filled with the requested

information from the camera.

Return value Name Type Description

ErrorMessage int 0 in case of success else less than 0,

see chapter Error/Warning Codes.

Example see PCO_SetSensorStruct

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 72

2.5.2 PCO_SetSensorStruct

Description This function sets all sensor settings at once. For the sake of clarity it is better to use the functions

that change individual parameters, instead of changing all settings at once. An invalid value for

one of the parameters will result in a failure response message.

The command will be rejected, if Recording State is [run], see PCO_GetRecordingState.

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetSensorStruct (

HANDLE ph, //in

PCO_Sensor* strSensor //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

strSensor PCO_Sensor* Pointer to a PCO_Sensor Structure filled with appropriate

parameters. The wSize parameter of this structure and also

of all nested structures must be filled with the correct structure

size in bytes.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

Example
HANDLE hCamera;

...

PCO_Sensor strSensor;

strSensor.wSize = sizeof(PCO_Sensor);

int err = PCO_GetSensorStruct(hCamera, &strSensor);

...

strSensor.wRoiX0 = 20;

strSensor.wRoiX1 = 820;

strSensor.wRoiY0 = 200;

strSensor.wRoiY1 = 400;

strSensor.wBinHorz = 2; Change horizontal binning

strSensor.wBinVert = 2; Change vertical binning

...

int err = PCO_SetSensorStruct(hCamera, &strSensor);

...

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 73

2.5.2.1 PCO_Sensor Structure

Name Type Description

wSize WORD Size of this structure

ZZwAlignDummy1 WORD Reserved

strDescription PCO_Description See PCO_Description Structure

strDescription2 PCO_Description2 See PCO_Description2 Structure

ZZdwDummy2[] DWORD Reserved

wSensorformat WORD Sensor format

wRoiX0 WORD Left horizontal ROI, starting with 1

wRoiY0 WORD Upper vertical ROI, starting with 1

wRoiX1 WORD Right horizontal ROI, up to the

maximal horizontal size of the sensor

wRoiY1 WORD Lower vertical ROI, up to the

maximal vertical size of the sensor

wBinHorz WORD Horizontal binning

wBinVert WORD Vertical binning

ZZwAlignDummy2 WORD Reserved

dwPixelRate DWORD Pixel rate in Hz. Only the values in

the dwPixelRateDESC array of the

PCO_Description Structure can be

used.

wConvFact WORD Conversion factor. Only the values

in the wConvFactDESC array of the

PCO_Description Structure can be

used.

wDoubleImage WORD Double image mode

wADCOperation WORD Number of used ADCs

wIR WORD IR sensitivity mode

sCoolSet SHORT Cooling setpoint

wOffsetRegulation WORD Offset regulation mode

wNoiseFilterMode WORD Noise filter mode

wFastReadoutMode WORD Fast readout mode

wDSNUAdjustMode WORD Dark signal non uniformaty

adjustment mode

wCDIMode WORD Correlated double image mode

ZZwDummy[] WORD Reserved

strSignalDesc PCO_Signal_Description Signal descriptor for camera input /

output connectors

ZZdwDummy[] DWORD Reserved

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 74

2.5.3 PCO_GetSizes

Description This function returns the current armed image size of the camera. If the user recently changed

the size influencing values without issuing a PCO_ArmCamera, the PCO_GetSizes function will

return the sizes from the last recording.

If no recording occurred, it will return the last ROI settings. In case Soft ROI is enabled, PCO_-

GetSizes returns the sizes of the current Soft ROI. The values wXResAct and wYResAct return

the current size, which should be used to allocate the buffers for image transfer. The values

wXResMax and wYResMax return the maximum possible resolution including doubleshutter mode

if available.

PCO recommends the following order of commands:

PCO_SetBinning, PCO_SetROI,PCO_ArmCamera, PCO_GetSizes andPCO_AllocateBuffer.

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetSizes (

HANDLE ph, //in

WORD* wXResAct, //out

WORD* wYResAct, //out

WORD* wXResMax, //out

WORD* wYResMax //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wXResAct WORD* Pointer to a WORD variable to get the current horizontal resolution.

wYResAct WORD* Pointer to a WORD variable to get the current vertical resolution.

wXResMax WORD* Pointer to a WORD variable to get the maximum horizontal resolution.

wYResMax WORD* Pointer to a WORD variable to get the maximum vertical resolution.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

Example
HANDLE hCamera;

...

WORD wXResAct; Actual X Resolution

WORD wYResAct; Actual Y Resolution

WORD wXResMax; Maximum X Resolution

WORD wYResMax; Maximum Y Resolution

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 75

2.5.4 PCO_GetSensorFormat

Description This function retrieves the current sensor format. In the format [standard] only effective pixels are

readout from the sensor. The readout in the format [extended] is camera dependent. Either a

distinct region of the sensor is selected or the full sensor including effective, dark, reference and

dummy pixels.

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetSensorFormat (

HANDLE ph, //in

WORD* wSensor //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wSensor WORD* Pointer to a WORD variable to get the sensor format:

• 0x0000 = [standard]

• 0x0001 = [extended]

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

Example
HANDLE hCamera;

...

WORD wSensorFormat;

int err = PCO_GetSensorFormat(hCamera, &wSensorFormat);

...

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 76

2.5.5 PCO_SetSensorFormat

Description This function sets the sensor format. In the format [standard] only effective pixels are readout from

the sensor. The readout in the format [extended] is camera dependent. Either a distinct region of

the sensor is selected or the full sensor including effective, dark, reference and dummy pixels.

Invalid values result in a failure response message.

The command will be rejected, if Recording State is [run], see PCO_GetRecordingState.

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetSensorFormat (

HANDLE ph, //in

WORD wSensor //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wSensor WORD WORD variable to set the sensor format:

• 0x0000 = [standard]

• 0x0001 = [extended]

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

Example
HANDLE hCamera;

...

WORD wSensorFormat;

wSensorFormat = 1; 0: normal, 1: extended

int err = PCO_SetSensorFormat(hCamera, wSensorFormat);

...

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 77

2.5.6 PCO_GetROI

Description
This function returns the current ROI (region of interest) setting in

pixels, see figure. If Soft ROI is enabled (see

PCO_EnableSoftROI) the current setting of the Soft ROI are

returned otherwise the ROI registers in the camera are readout.

The returned ROI is always equal to or smaller than the active

image area, which is defined by the settings of format and

binning (see chapter Image Area Selection (ROI)).

1/1

x1/y1
hmax /vmax

ROI

Image sensor area

x0/y0

Supported

camera type(s)

All cameras

Descriptor

dependency

wRoiHorStepsDESC, wRoiVertStepsDESC

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetROI (

HANDLE ph, //in

WORD* wRoiX0, //out

WORD* wRoiY0, //out

WORD* wRoiX1, //out

WORD* wRoiY1 //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wRoiX0 WORD* Pointer to a WORD variable to get the horizontal start coordinate of the

ROI.

wRoiY0 WORD* Pointer to a WORD variable to get the vertical start coordinate of the ROI.

wRoiX1 WORD* Pointer to a WORD variable to get the horizontal end coordinate of the ROI.

wRoiY1 WORD* Pointer to a WORD variable to get the vertical end coordinate of the ROI.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

Example see PCO_GetSizes

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 78

2.5.7 PCO_SetROI

Description This function sets a ROI (region of interest) area on the sensor of the camera. See chapter Image

Area Selection (ROI) how valid input parameters can be determined. Invalid values will result in

a failure response message either immediately or from next PCO_ArmCamera call.

The command will be rejected, if Recording State is [run], see PCO_GetRecordingState.

Supported

camera type(s)

pco.edge, pco.edge bi, pco.dimax, pco.1200, pco.1600, pco.2000, pco.4000, pco.dicam

Descriptor

dependency

wRoiHorStepsDESC, wRoiVertStepsDESC

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetROI (

HANDLE ph, //in

WORD wRoiX0, //in

WORD wRoiY0, //in

WORD wRoiX1, //in

WORD wRoiY1 //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wRoiX0 WORD WORD variable to set the horizontal start coordinate of the ROI.

wRoiY0 WORD WORD variable to set the vertical start coordinate of the ROI.

wRoiX1 WORD WORD variable to set the horizontal end coordinate of the ROI.

wRoiY1 WORD WORD variable to set the vertical end coordinate of the ROI.

Parameter

dependency

wMaxHorzResStdDESC, wMaxVertResStdDESC

wMaxHorzResExtDES, wMaxVertResExtDESC

wRoiHorStepsDESC, wRoiVertStepsDESC

wMinSizeHorzDESC, wMinSizeVertDESC

wSoftRoiHorStepsDESC, wSoftRoiVertStepsDESC

dwGeneralCapsDESC1:

ROI_VERT_SYMM_TO_HORZ_AXIS, ROI_VERT_SYMM_TO_VERT_AXIS

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 79

Example
HANDLE hCamera;

...

WORD wRoiX0; x value for the upper left ←↩
corner.

WORD wRoiY0; y value for the upper left ←↩
corner.

WORD wRoiX1; x value for the lower right ←↩
corner.

WORD wRoiY0; y value for the lower right ←↩
corner.

wRoiX0 = 20; wRoiX1 = 820; wRoiY0 = 200; wRoiY1 = 400;

int err = PCO_SetROI(hCamera, wRoiX0, wRoiY0, wRoiX1, wRoiY1);

...

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 80

2.5.8 PCO_GetBinning

Description This function returns the current binning setting for the horizontal and vertical directions.

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetBinning (

HANDLE ph, //in

WORD* wBinHorz, //out

WORD* wBinVert //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wBinHorz WORD* Pointer to a WORD variable to get the horizontal binning.

wBinVert WORD* Pointer to a WORD variable to get the vertical binning.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

Example
WORD wBinHorz = 0, wBinVert = 0;

PCO_GetBinning(hcam, &wBinHorz, &wBinVert);

To get mode parameter, too (optional):

WORD wBinHorz = BINNING_MODE_MASK, wBinVert = BINNING_MODE_MASK;

PCO_GetBinning(hcam, &wBinHorz, &wBinVert);

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 81

2.5.9 PCO_SetBinning

Description This function sets the horizontal and vertical binning of the camera. Possible values can be

calculated from the binning parameter in the PCO_Description Structure. If the binning settings

are changed, the ROI (region of interest) setting must be adapted, before PCO_ArmCamera is

called. See chapter Image Area Selection (ROI).

Invalid values result in a failure response message.

The command will be rejected, if Recording State is [run], see PCO_GetRecordingState.

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetBinning (

HANDLE ph, //in

WORD wBinHorz, //in

WORD wBinVert //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wBinHorz WORD WORD variable to set the horizontal binning.

wBinVert WORD WORD variable to set the vertical binning.

Parameter

dependency

wMaxBinHorzDESC, wMaxBinVertDESC

wBinHorzSteppingDESC, wBinVertSteppingDESC

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

Example see PCO_SetROI

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 82

2.5.10 PCO_GetPixelRate

Description This function returns the current pixel rate of the camera in Hz. The pixel rate determines the

sensor readout speed.

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetPixelRate (

HANDLE ph, //in

DWORD* dwPixelRate //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

dwPixelRate DWORD* Pointer to a DWORD variable to get the pixel rate in Hz.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

Example
HANDLE hCamera;

...

DWORD dwPixelRate; PixelRate

int err = PCO_GetPixelRate(hCamera, &dwPixelRate);

...

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 83

2.5.11 PCO_SetPixelRate

Description This function sets the pixel rate for the sensor readout. Only values that are listed in the parameter

list dwPixelRateDESC of the PCO_Description Structure, are accepted.

For pco.edge 5.5with Camera Link interfacePCO_SetTransferParameter andPCO_SetActiveLookupTable

with appropriate parameters must be called. See chapter Image Area Selection (ROI).

Invalid values result in a failure response message. The command will be rejected, if Recording

State is [run], see PCO_GetRecordingState.

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetPixelRate (

HANDLE ph, //in

DWORD dwPixelRate //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

dwPixelRate DWORD DWORD variable to set the pixel rate in Hz.

Parameter

dependency

dwPixelRateDESC

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

Example
HANDLE hCamera;

...

DWORD dwPixelRate;

dwPixelRate = 20000000; PixelRate in Hz

int err = PCO_SetPixelRate(hCamera, dwPixelRate);

...

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 84

2.5.12 PCO_GetConversionFactor

Description This function returns the current conversion factor setting of the image sensor multiplied with the

factor 100. To get the current conversion factor in electrons / count the returned value must be

divided by 100.

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetConversionFactor (

HANDLE ph, //in

WORD* wConvFact //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wConvFact WORD* Pointer to a WORD variable to get the conversion factor.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 85

2.5.13 PCO_SetConversionFactor

Description This function sets the conversion factor of the camera. Only values that are listed in the parameter

list wConvFactDESC of thePCO_Description Structure are accepted. The input value is calculated

from the conversion factor in electrons / count multiplied with 100.

Invalid values result in a failure response message. The command will be rejected, if Recording

State is [run], see PCO_GetRecordingState.

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetConversionFactor (

HANDLE ph, //in

WORD wConvFact //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wConvFact WORD WORD variable to set the conversion factor.

Parameter

dependency

wConvFactDESC

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 86

2.5.14 PCO_GetDoubleImageMode

Description This function returns whether the camera is running in double image mode or not.

Supported

camera type(s)

All cameras

Descriptor

dependency

wDoubleImageDESC

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetDoubleImageMode (

HANDLE ph, //in

WORD* wDoubleImage //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wDoubleImage WORD* Pointer to a WORD variable to get the double image mode:

• 0x0000 = double image mode [OFF]

• 0x0001 = double image mode [ON]

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 87

2.5.15 PCO_SetDoubleImageMode

Description This function sets the double image operating mode. Cameras with activated double image

mode read out two exposures separated by a short interframe time. The resulting double image

is transferred as one frame that means the two images resulting from the two / double exposures

are stitched together as one and are counted as one.

Thus the buffer size of all allocated buffers has to be doubled. The first half of the buffer will be filled

with the first exposed frame (image A). The second exposed frame (image B) will be transferred to

the second half of the buffer.

Invalid values result in a failure response message. The command will be rejected, if Recording

State is [run], see PCO_GetRecordingState.

Supported

camera type(s)

All cameras

Descriptor

dependency

wDoubleImageDESC

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetDoubleImageMode (

HANDLE ph, //in

WORD wDoubleImage //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wDoubleImage WORD WORD variable to set the double image mode:

• 0x0000 = double image mode [OFF]

• 0x0001 = double image mode [ON]

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 88

2.5.16 PCO_GetADCOperation

Description This function returns the ADC (analog / digital converter) operating mode (single / dual) currently

in use by the camera.

Supported

camera type(s)

pco.edge bi, pco.1600, pco.2000, pco.4000

Descriptor

dependency

wNumADCsDESC

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetADCOperation (

HANDLE ph, //in

WORD* wADCOperation //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wADCOperation WORD* Pointer to a WORD variable to get the ADC operation:

• 0x0001 = [single ADC]

• 0x0002 = [dual ADC]

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 89

2.5.17 PCO_SetADCOperation

Description This function sets the ADC (analog-digital-converter) operating mode. Possible values are given

through the parameter wNumADCsDESC of the PCO_Description Structure. If sensor data is read

out using single ADC operation linearity of image data is enhanced, using dual ADC operation

readout is faster and allows higher frame rates. If dual ADC operating mode is set, horizontal ROI

must be adapted to symmetrical values.

Supported

camera type(s)

pco.edge bi, pco.1600, pco.2000, pco.4000

Descriptor

dependency

wNumADCsDESC

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetADCOperation (

HANDLE ph, //in

WORD wADCOperation //in

);

Parameter

dependency

wNumADCsDESC

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wADCOperation WORD WORD variable to set the ADC operation mode:

• 0x0001 = [single ADC]

• 0x0002 = [dual ADC]

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 90

2.5.18 PCO_GetIRSensitivity

Description This function returns the IR sensitivity operating mode currently in use by the camera.

Supported

camera type(s)

All cameras

Descriptor

dependency

wIRDESC

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetIRSensitivity (

HANDLE ph, //in

WORD* wIR //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wIR WORD* Pointer to a WORD variable to get the IR sensitivity:

• 0x0000 = IR sensitivity [OFF]

• 0x0001 = IR Sensitivity [ON]

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 91

2.5.19 PCO_SetIRSensitivity

Description This function sets the IR sensitivity operating mode. This option is only available for special

camera models with image sensors that have improved IR sensitivity. Availability of this option can

be checked with the parameter wIRDESC of the PCO_Description Structure. If IR sensitivity is

activated limits for the delay and exposure times are defined through parameters dwMinDelayIRDESC

, dwMaxDelayIRDESC, dwMinExposIRDESC and dwMaxExposIRDESC of the PCO_Description

Structure.

Supported

camera type(s)

pco.pixelfly usb, pco.1300, pco.1400

Descriptor

dependency

wIRDESC

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetIRSensitivity (

HANDLE ph, //in

WORD wIR //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wIR WORD WORD variable to set the IR sensitivity:

• 0x0000 = IR sensitivity [OFF]

• 0x0001 = IR Sensitivity [ON]

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 92

2.5.20 PCO_GetCoolingSetpointTemperature

Description This function returns the temperature setpoint for the image sensor.

The current sensor temperature can be read out with the PCO_GetTemperature function.

Supported

camera type(s)

pco.1300, pco.1600, pco.2000, pco.4000, pco.edge, pco.flim, pco.edge bi, pco.dicam

Descriptor

dependency

dwGeneralCapsDESC1: COOLING_SETPOINTS

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetCoolingSetpointTemperature (

HANDLE ph, //in

SHORT* sCoolSet //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

sCoolSet SHORT* Pointer to a SHORT variable to get the current cooling temperature

setpoint as signed value in °C units.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 93

2.5.21 PCO_SetCoolingSetpointTemperature

Description This function sets the temperature setpoint for the image sensor in °C. A peltier cooling unit is

used to regulate the temperature of the sensor to the given temperature setpoint. Thus reduces

dark current noise and improves image quality. Valid values for the setpoint must be in the range

between sMinCoolSetDESC and sMaxCoolSetDESC. The current temperature must be checked

to see when the setpoint temperature is reached.

Default temperature regulation setpoint is defined in sDefaultCoolSetDESC parameter of the

PCO_Description Structure. Temperature regulation for the sensor is not available, when both

temperature range parameters sMinCoolSetDESC and sMaxCoolSetDESC of thePCO_Description

Structure are zero.

Valid range depends on camera type. Invalid values result in a failure response message. The

current temperature of the sensor can be read out with the PCO_GetTemperature command.

Supported

camera type(s)

pco.1300, pco.1600, pco.2000, pco.4000, pco.edge, pco.flim, pco.edge bi, pco.dicam

Descriptor

dependency

sMinCoolSetDESC, sMaxCoolSetDESC dwGeneralCapsDESC1: COOLING_SETPOINTS

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetCoolingSetpointTemperature (

HANDLE ph, //in

SHORT sCoolSet //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

sCoolSet SHORT SHORT variable to set the cooling setpoint.

Parameter

dependency

sMinCoolSetDESC, sMaxCoolSetDESC, sCoolingSetpoints

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 94

2.5.22 PCO_GetCoolingSetpoints

Description This function gets the cooling setpoints of the camera. This is usedwhen nominimumormaximum

range is available.

Supported

camera type(s)

All cameras

Descriptor

dependency

dwGeneralCapsDESC1: COOLING_SETPOINTS

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetCoolingSetpoints (

HANDLE ph, //in

WORD wBlockID, //in

WORD* wNumSetPoints, //in, out

SHORT* sCoolSetpoints //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wBlockID WORD Number of the block to query (currently 0).

wNumSetPoints WORD* WORD pointer to set the max number of setpoints to

query and to get the valid number of setpoints inside

the camera. In case more than COOLING_SETPOINTS_-

BLOCKSIZE setpoints are valid they can be queried by

incrementing the wBlockID till wNumSetPoints is reached.

The valid members of the setpoints can be used to set the

PCO_SetCoolingSetpointTemperature.

sCoolSetpoints SHORT* Pointer to a SHORT array to receive the possible cooling

setpoint temperatures. Size of array must be larger enough

to hold, COOLING_SETPOINTS_BLOCKSIZE short values.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 95

2.5.23 PCO_GetOffsetMode

Description This function returns the current mode for the offset regulation with reference pixels (see respective

camera manual for further explanations).

Supported

camera type(s)

pco.pixelfly usb, pco.ultraviolet, pco.1300, pco.1400

Descriptor

dependency

wOffsetRegulationDESC

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetOffsetMode (

HANDLE ph, //in

WORD* wOffsetRegulation //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wOffsetRegulation WORD* Pointer to a WORD variable to get the offset mode:

• 0x0001 = [auto]

• 0x0001 = [off]

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 96

2.5.24 PCO_SetOffsetMode

Description This function sets the operating mode for the offset regulation with reference pixels (see respective

camera manual for further explanations).

The command will be rejected, if Recording State is [run], see PCO_GetRecordingState.

Supported

camera type(s)

pco.pixelfly usb, pco.ultraviolet, pco.1300, pco.1400

Descriptor

dependency

wOffsetRegulationDESC

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetOffsetMode (

HANDLE ph, //in

WORD wOffsetRegulation //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wOffsetRegulation WORD WORD variable to set the offset mode:

• 0x0001 = [auto]

• 0x0001 = [off]

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 97

2.5.25 PCO_GetNoiseFilterMode

Description This function returns the current operating mode of the image correction in the camera.

Supported

camera type(s)

All cameras

Descriptor

dependency

dwGeneralCapsDESC1: NOISE_FILTER, HOTPIX_ONLY_WITH_NOISE_FILTER

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetNoiseFilterMode (

HANDLE ph, //in

WORD* wNoiseFilterMode //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wNoiseFilterMode WORD* Pointer to a WORD variable to get the noise filter mode:

• 0x0000 = [off]

• 0x0001 = [on]

• 0x0101 = [on + hot pixel correction]

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 98

2.5.26 PCO_SetNoiseFilterMode

Description This function sets the image correction operating mode of the camera. Image correction can either

be switched to totally off, noise filter only mode or noise filter plus hot pixel correction mode. The

command will be rejected, if Recording State is [run], see PCO_GetRecordingState.

Supported

camera type(s)

All cameras

Descriptor

dependency

dwGeneralCapsDESC1: NOISE_FILTER, HOTPIX_ONLY_WITH_NOISE_FILTER

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetNoiseFilterMode (

HANDLE ph, //in

WORD wNoiseFilterMode //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wNoiseFilterMode WORD Noise filter mode:

• 0x0000 = [off]

• 0x0001 = [on]

• 0x0101 = [on + hot pixel correction]

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 99

2.5.27 PCO_GetLookupTableInfo

Description Description of internal lookup tables (LUT) is queried. First, the number of available LUTs in the

camera must be queried. This can be done by setting all pointers to NULL except the pointer to

wNumberOffLuts. The value returned in wNumberOffLuts correspondends to the number of

available LUTs. Description of a certain LUT can then be queried by calling the function using input

parameter wLUTNum and providing valid pointers for the other parameters.

The command will be rejected, if Recording State is [run], see PCO_GetRecordingState.

Supported

camera type(s)

pco.edge

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetLookupTableInfo (

HANDLE ph, //in

WORD wLUTNum, //in

WORD* wNumberOfLuts, //out

char* Description, //out

WORD wDescLen, //in

WORD* wIdentifier, //out

BYTE* bInputWidth, //out

BYTE* bOutputWidth, //out

WORD* wFormat //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wLUTNum WORD WORD variable to select number of LUT to query.

wNumberOfLuts WORD* Pointer to a WORD variable to get number of LUTs, which can be

queried.

Description char* Pointer to a char array. The LUT description as ASCII string. At

most 20 bytes are returned from the camera.

wDescLen WORD Size of the character array, which is passed in.

wIdentifier WORD* Pointer to a WORD variable to get the LUT identifier.

bInputWidth BYTE* Pointer to a BYTE variable to get the number of input bits.

bOutputWidth BYTE* Pointer to a BYTE variable to get the number of output bits.

wFormat WORD* Pointer to a WORD variable to get the accepted data structures.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 100

Example
WORD wNumberOfLuts;

PCO_OpenCamera(&ph,0);

PCO_GetLookupTableInfo(ph, 0, &wNumberOfLuts, NULL, 0, NULL, NULL←↩
, NULL, NULL);

char lutname[20];

wORD wDescLen=20;

WORD wIdentifier;

BYTE bInputWidth;

BYTE bOutputWidth;

WORD wFormat;

PCO_GetLookupTableInfo(ph, 0, &wNumberOfLuts, lutname, wDescLen, ←↩
&wIdentifier, &bInputWidth, &bOutputWidth, &wFormat);…

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 101

2.5.28 PCO_GetActiveLookupTable

Description This function returns the active lookup table (LUT) in the camera.

Supported

camera type(s)

pco.edge, pco.edge bi

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetActiveLookupTable (

HANDLE ph, //in

WORD* wIdentifier, //out

WORD* wParameter //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wIdentifier WORD* Pointer to a WORD variable to get the identifier of the currently

selected LUT:

• 0x0000 = [lookup table is disabled]

• 0x#### = [identifier of the active lookup table]

wParameter WORD* Pointer to a WORD variable to get the currently used offset value for

the calculation of the LUT input data.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 102

2.5.29 PCO_SetActiveLookupTable

Description This function sets an active lookup table (LUT) in the camera. If wIdentifier is set to 0 while calling

this function, the lookup table functionality will be disabled and data values from the sensor are

directly sendt to the interface. If wIdentifier is one of the available LUT identifiers of the camera

data handling is as follows: First, the offset value given by parameter wOffset is subtracted from

the data values from the sensor. The resulting value is the input to the current selected LUT.

Valid values for the LUT identifier wIdentifier can be retrievedwith function PCO_GetLookuptableInfo.

Supported

camera type(s)

pco.edge, pco.edge bi

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetActiveLookupTable (

HANDLE ph, //in

WORD* wIdentifier, //in

WORD* wParameter //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wIdentifier WORD* Pointer to a WORD variable to select the current LUTs:

• 0x0000 = [lookup table is disabled]

• 0x#### = [identifier of the active lookup table]

wParameter WORD* Pointer to a WORD variable for the offset.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 103

2.5.30 PCO_GetSensorDarkOffset

Description Gets the sensor dark offset.

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetSensorDarkOffset (

HANDLE ph, //in

WORD* pwDarkOffset //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

pwDarkOffset WORD* Pointer to a WORD variable to receive the offset.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 104

2.6 Timing Control

This function group can be used to get or set parameters regarding the image timing of the camera

like trigger mode, exposure time, frame rate and others.

With the function PCO_GetCOCRuntime, the maximum possible frame rate can be evaluated,

which also determines themaximumpossible trigger rate for an external triggered camera. Changing

the delay and / or exposure time of the camera either directly or through one of the frame rate

functions can be done also when PCO_SetRecordingState is [run].

The changed setting is sent directly to the camera, but it might need several image transfers until

the effects can be seen in the image data. It is recommended to use always the PCO_Get…

functions after the PCO_Set.. function when the image timing parameters should be checked.

Mixing different functions might result in wrong return values.

Although delay and exposure time values can be given as a table of values, most cameras support

only a single pair of values. Only cameras which have option wTimeTableDESC set can accept

time values for subsequent images.

2.6.1 PCO_GetTimingStruct

Description Timing related information is queried from the camera and the variables of thePCO_Timing Structure

are filled with this information. This function is a combined version of the functions that request

information about the current settings of timing related parameters. For a detailed description of

each parameter see the functions in this chapter.

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetTimingStruct (

HANDLE ph, //in

PCO_Timing* strTiming //in,out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

strTiming PCO_Timing* Pointer to a PCO_Timing Structure structure:

• On input the wSize parameter of this structure and also

of all nested structures must be filled with the correct

structure size in bytes

• On output the structure is filled with the requested

information from the camera to get the timing settings

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 105

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

2.6.2 PCO_SetTimingStruct

Description This function sest the complete set of the timing settings. For the sake of clarity it is better to use

the individual functions to change a specific parameter, instead of changing all settings at once.

An invalid value for one of the parameters will result in a failure response message.

If a single exposure/delay pair is to be set, the user must set all of the table members to zero

except the first member 0. The table member 0 will hold the value for the single delay / exposure

pair.

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetTimingStruct (

HANDLE ph, //in

PCO_Timing* strTiming //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

strTiming PCO_Timing* Pointer to a PCO_Timing structure filled with appropriate

parameters. The wSize parameter of this structure and also

of all nested structures must be filled with the correct structure

size in bytes.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 106

2.6.2.1 PCO_Timing Structure

Name Type Description

wSize WORD Size of this structure.

wTimeBaseDelay WORD Time base delay:

• 0x0000 = [ns]

• 0x0001 = [µs]

• 0x0002 = [ms]

wTimeBaseExposure WORD Time base exposure:

• 0x0000 = [ns]

• 0x0001 = [µs]

• 0x0002 = [ms]

ZZwAlignDummy1 WORD Reserved.

ZZdwDummy0 [2] DWORD Reserved.

dwDelayTable [16] DWORD Table with delay time values (for subsequent

images).

ZZdwDummy [114] DWORD Reserved.

dwExposureTable [16] DWORD Table with exposure time values (for subsequent

images).

ZZdwDummy2 [112] DWORD Reserved.

wTriggerMode WORD Trigger mode:

• 0x0000 = [auto]

• 0x0001 = [software trigger]

• 0x0002 = [extern]

• 0x0003 = [external exposure control]

• 0x0004 = [external synchronized]

wForceTrigger WORD Force trigger (Auto reset flag!).

wCameraBusyStatus WORD Camera busy status:

• 0x0000 = [idle]

• 0x0001 = [busy]

wPowerDownMode WORD Power down mode:

• 0x0000 = [auto]

• 0x0001 = [user]

dwPowerDownTime DWORD Power down time 0 ms...49.7 d.

Continued on next page

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 107

Continued from previous page

Name Type Description

wExpTrgSignal WORD Exposure trigger signal status.

wFPSExposureMode WORD CMOS sensor FPS exposure mode.

wFPSExposureTime DWORD Resulting exposure time in FPS mode.

wModulationMode WORD Mode for modulation:

• 0x0000 = [modulation off]

• 0x0001 = [modulation on]

wCameraSynchMode WORD Camera synchronization mode:

• 0x0000 = [off]

• 0x0001 = [master]

• 0x0002 = [slave]

dwPeriodicalTime DWORD Periodical time for modulation.

wTimeBasePeriodical WORD Time base for periodical time for modulation:

• 0x0000 = [ns]

• 0x0001 = [µs]

• 0x0002 = [ms]

ZZwAlignDummy3 WORD Reserved.

dwNumberOfExposures DWORD Number of exposures during modulation.

lMonitorOffset LONG Monitor offset value in ns.

strSignal [20] PCO Signal Signal settings.

wStatusFrameRate WORD Frame rate status.

wFrameRateMode WORD Mode for frame rate.

dwFrameRate DWORD Frame rate in mHz.

dwFrameRateExposure DWORD Exposure time in ns.

wTimingControlMode WORD Timing control mode:

• 0x0000 = [exposure/ delay]

• 0x0001 = [fps]

wFastTimingMode WORD Fast timing mode:

• 0x0000 = [off]

• 0x0001 = [on]

ZZwDummy [24] WORD Reserved.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 108

2.6.3 PCO_GetCOCRuntime

Description This function can be used to calculate the current frame rate of the camera.

The returned values describe exactly how much time is required to take a single image. The

resulting time is calculated inside the camera and depends on the settings of the timing and sensor

parameters. To cover the full range of possible times it is split in two parts: Parameter dwTime_s

gives the number of seconds and dwTime_ns gives the number of nano seconds in the range from

0 to 999999999 ns.

If external exposure is active, the returned value describes the readout time only.

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetCOCRuntime (

HANDLE ph, //in

DWORD* dwTime_s, //out

DWORD* dwTime_ns //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

dwTime_s DWORD* Pointer to a DWORD variable to get the COC runtime part in seconds.

dwTime_ns DWORD* Pointer to a DWORD variable to get the COC runtime part in

nanoseconds.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 109

2.6.4 PCO_GetDelayExposureTime

Description This function returns the current setting of the delay and exposure time values and the associated

time base values.

Returned values are only valid if last timing command was PCO_SetDelayExposureTime.

Due to hardware limitations the returned values for the pco.edge, pco.1300 and pco.1400 are

rounded values. To get exact timing values for the pco.edge please use functionPCO_GetImageTiming.

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetDelayExposureTime (

HANDLE ph, //in

DWORD* dwDelay, //out

DWORD* dwExposure, //out

WORD* wTimeBaseDelay, //out

WORD* wTimeBaseExposure //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

dwDelay DWORD* Pointer to a DWORD variable to get the delay time.

dwExposure DWORD* Pointer to a DWORD variable to get the exposure time.

wTimeBaseDelay WORD* Pointer to a WORD variable to get the delay time base:

• 0x0000 = [ns]

• 0x0001 = [µs]

• 0x0002 = [ms]

wTimeBaseExposure WORD* Pointer to a WORD variable to get the exposure time base:

• 0x0000 = [ns]

• 0x0001 = [µs]

• 0x0002 = [ms]

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 110

2.6.5 PCO_SetDelayExposureTime

Description This function sets the delay and exposure time and the associated time base values. When the

Recording State of the camera is [run], camera timing is changed immediately (best possible),

else new settings will be valid after a call of PCO_ArmCamera.

Restrictions for the parameter values are defined through the following values in the camera description

PCO_Description Structure: dwMinDelayDESC, dwMaxDelayDESC,

dwMinDelayStepDESC, dwMinExposDESC, dwMaxExposDESC, dwMinExposStepDESC. Due

to hardware limitations the input values cannot be set exactly for the pco.edge, pco.dimax and

pco.1300 and therefore are changed to the next possible values in the camera. To retrieve the

exact timing values, which are used in the pco.edge, please use function PCO_GetImageTiming.

Because frame rate and exposure time are also affected by the PCO_SetFrameRate command, it

is strongly recommended to use either thePCO_SetFrameRate or thePCO_SetDelayExposureTime

command.

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetDelayExposureTime (

HANDLE ph, //in

DWORD dwDelay, //in

DWORD dwExposure, //in

WORD wTimeBaseDelay, //in

WORD wTimeBaseExposure //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

dwDelay DWORD DWORD variable to set the delay time.

dwExposure DWORD DWORD variable to set the exposure time.

wTimeBaseDelay WORD WORD variable to set the time base of the delay time:

• 0x0000 = [ns]

• 0x0001 = [µs]

• 0x0002 = [ms]

wTimeBaseExposure WORD WORD variable to set the time base of the exposure time:

• 0x0000 = [ns]

• 0x0001 = [µs]

• 0x0002 = [ms]

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 111

Parameter

dependency

dwMinDelayDESC, dwMaxDelayDESC, dwMinDelayStepDESC

dwMinExposDESC, dwMaxExposDESC, dwMinExposStepDESC

dwMinDelayIRDESC, dwMaxDelayIRDESC

dwMinExposIRDESC, dwMaxExposIRDESC

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 112

2.6.6 PCO_GetDelayExposureTimeTable

Description This function returns the current setting of the delay and exposure time table values and the

associated time base values. Maximum size of each array is 16 DWORD entries. Returned values

are only valid if the last timing command was PCO_SetDelayExposureTimeTable.

See PCO_SetDelayExposureTimeTable for a more detailed description of the delay / exposure

time table usage.

Supported

camera type(s)

All cameras

Descriptor

dependency

wTimeTableDESC

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetDelayExposureTimeTable (

HANDLE ph, //in

DWORD* dwDelay, //out

DWORD* dwExposure, //out

WORD* wTimeBaseDelay, //out

WORD* wTimeBaseExposure, //out

WORD wCount //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

dwDelay DWORD* Pointer to a DWORD array to get the delay times.

dwExposure DWORD* Pointer to a DWORD array to get the exposure times.

wTimeBaseDelay WORD* Pointer to a WORD variable to get the time base of the delay

times.

wTimeBaseExposure WORD* Pointer to a WORD variable to get the time base of the

exposure times.

wCount WORD WORD variable to define the number of DWORDs, which can

be hold from the time table arrays.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

Example see PCO_SetDelayExposureTimeTable

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 113

2.6.7 PCO_SetDelayExposureTimeTable

Description This function sets the delay and exposure time pairs in the time table and the associated time

base values. Maximum size of each table array is 16 DWORD entries. Delay / exposure time table

operation is supported, if wTimeTableDESC in the camera description is set. After the camera is

started it will take a series of consecutive images with delay and exposure times as defined in the

table. The first found exposure time entry with value zero breaks the sequence and operation starts

again from the beginning of the table. This results in a sequence of 1 to 16 images with different

delay and exposure time settings. External or automatic image triggering is fully functional for

every image in the sequence. If the user wants maximum speed (at CCDs overlapping exposure

and read out is taken), [auto trigger] should be selected and the sequence should be controlled

with the <acq enbl> input.

The commands PCO_SetDelayExposureTime and PCO_SetDelayExposureTimeTable can only

be used alternatively. Using PCO_SetDelayExposureTime has the same effect as using the

PCO_SetDelayExposureTimeTable command and setting all but the first delay / exposure entry

to zero.

Restrictions for the parameter values are defined through the following values in the camera description

PCO_Description Structure: dwMinDelayDESC, dwMaxDelayDESC, dwMinDelayStepDESC,

dwMinExposDESC, dwMaxExposDESC, dwMinExposStepDESC.

Supported

camera type(s)

All cameras

Descriptor

dependency

wTimeTableDESC

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetDelayExposureTimeTable (

HANDLE ph, //in

DWORD* dwDelay, //in

DWORD* dwExposure, //in

WORD wTimeBaseDelay, //in

WORD wTimeBaseExposure, //in

WORD wCount //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

dwDelay DWORD* Pointer to a DWORD array to set the delay times.

dwExposure DWORD* Pointer to a DWORD array to set the exposure times.

wTimeBaseDelay WORD Word variable to set the time base of the delay times:

• 0x0000 = [ns]

• 0x0001 = [µs]

• 0x0002 = [ms]

Continued on next page

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 114

Continued from previous page

Name Type Description

wTimeBaseExposure WORD Word variable to set the time base of the exposure times:

• 0x0000 = [ns]

• 0x0001 = [µs]

• 0x0002 = [ms]

wCount WORD WORD variable to set the number of DWORD entries in the

tables.

Parameter

dependency

dwMinDelayDESC, dwMaxDelayDESC, dwMinDelayStepDESC

dwMinExposDESC, dwMaxExposDESC, dwMinExposStepDESC

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

Example
#define MAXTIMEPAIRS 16 maximum count of delay and exposure pairs

HANDLE hHandleCam;

...

DWORD dwDelay[MAXTIMEPAIRS], dwExposure[MAXTIMEPAIRS];

WORD wTimeBaseDelay, wTimeBaseExposure;

int err = PCO_GetDelayExposureTimeTable(hHandleCam, &dwDelay[0], &←↩
dwExposure[0],

&wTimeBaseDelay, &wTimeBaseExposure, MAXTIMEPAIRS);

dwDelay[0] = 100;

dwExposure[0] = 10;

dwDelay[1] += 200;

dwExposure[1] += 10; This changes only the first two←↩
pairs.

int err = PCO_SetDelayExposureTimeTable(hHandleCam, &dwDelay[0], &←↩
dwExposure[0],

wTimeBaseDelay, wTimeBaseExposure, 2);

...

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 115

2.6.8 PCO_GetFrameRate

Description This function returns the current frame rate and exposure time settings of the camera. Returned

values are only valid if last timing command was PCO_SetFrameRate.

Supported

camera type(s)

All cameras

Descriptor

dependency

dwGeneralCapsDESC1: SETFRAMERATE_ENABLED

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetFrameRate (

HANDLE ph, //in

WORD* wFrameRateStatus, //out

DWORD* dwFrameRate, //out

DWORD* dwFrameRateExposure //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wFrameRateStatus WORD* Pointer to a WORD variable to get the frame rare status:

• 0x0000 = Settings consistent, all conditions met

• 0x0001 = Frame rate trimmed, frame rate was

limited by readout time

• 0x0002 = Frame rate trimmed, frame rate was

limited by exposure time

• 0x0004 = Exposure time trimmed, exposure time

cut to frame time

• 0x8000 = Return values dwFrameRate and

dwFrameRateExposure are not yet validated.

The values returned are the values which were

passed with the most recent call of the PCO_-

SetFrameRate function

dwFrameRate DWORD* Pointer to a DWORD variable to get the frame rate in mHz.

dwFrameRateExposure DWORD* Pointer to a DWORD variable to get the exposure time in

ns.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 116

2.6.9 PCO_SetFrameRate

Description This function directly sets the frame rate and the exposure time of the camera. The frame rate is

limited by the readout time and the exposure time.

frame rate ≤
1

treadout

frame rate ≤
1

texpos

Please note that there are some overhead times, therefore the real values can differ slightly, e.g.

the maximum frame rate will be a little bit less than 1 / exposure time. The in wFramerateMode

parameter defines how the function works if any of the conditions are not met.

If Recording State is [run] (see PCO_GetRecordingState) the frame rate and exposure time of

the camera is changed immediately. The input parameters are adapted according to the given rule

in wFramerateMode. The function returns the currently configured frame rate and exposure time.

If Recording State of the camera is [stop] the given frame rate and exposure time is stored in the

camera. The function does not adapt the input values for frame rate and exposure time. The next

call of PCO_ArmCamera validates the input parameters together with other settings. Status of

validation can be seen in the returned status wFrameRateStatus.

The following procedure is recommended:

• Set PCO_SetRecordingState to [stop].

• Set frame rate and exposure time using the PCO_SetFrameRate function.

• Do other settings, before or after the PCO_SetFrameRate function.

• Call the PCO_ArmCamera function in order to validate the settings.

• Retrieve the currently set frame rate and exposure time using PCO_GetFrameRate.

Because frame rate and exposure time are also affected by the PCO_SetDelayExposureTime

command, it is strongly recommended to use either thePCO_SetFrameRate or thePCO_SetDelayExposureTime

command.

Supported

camera type(s)

pco.edge, pco.dimax

Descriptor

dependency

dwGeneralCapsDESC1: SETFRAMERATE_ENABLED

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetFrameRate (

HANDLE ph, //in

WORD* wFrameRateStatus, //out

WORD wFrameRateMode, //in

DWORD* dwFrameRate, //in,out

DWORD* dwFrameRateExposure //in,out

);

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 117

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wFrameRateStatus WORD* Pointer to a WORD variable to get the frame rare status:

• 0x0000 = Settings consistent, all conditions met

• 0x0001 = Frame rate trimmed, frame rate was

limited by readout time

• 0x0002 = Frame rate trimmed, frame rate was

limited by exposure time

• 0x0004 = Exposure time trimmed, exposure time

cut to frame time

• 0x8000 = Return values dwFrameRate and

dwFrameRateExposure are not yet validated.

In that case, the values returned are the values

passed to the function

wFrameRateMode WORD WORD variable to set the frame rate mode:

• 0x0000 = Auto mode (camera decides which

parameter will be trimmed)

• 0x0001 = Frame rate has priority (exposure time

will be trimmed)

• 0x0002 = Exposure time has priority (frame rate

will be trimmed)

• 0x0003 = Strict, function shall return with error if

values are not possible

dwFrameRate DWORD* Pointer to a DWORD variable to set and get the frame

rate:

• Frame rate in mHz (milliHertz), thus e.g. 1kHz =

1000000

dwFrameRateExposure DWORD* Pointer to a DWORD variable to set and get the exposure

time in ns.

Parameter

dependency

dwMinDelayDESC, dwMaxDelayDESC, dwMinDelayStepDESC

dwMinExposDESC, dwMaxExposDESC, dwMinExposStepDESC

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 118

2.6.10 PCO_GetFPSExposureMode

Description This function returns the status of FPS exposure mode setting and according exposure time

information.

Supported

camera type(s)

pco.1200

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetFPSExposureMode (

HANDLE ph, //in

WORD* wFPSExposureMode, //out

DWORD* dwFPSExposureTime //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wFPSExposureMode WORD* Pointer to a WORD to get the FPS exposure mode:

• 0x0000 = FPS exposure mode [off]

• 0x0001 = FPS exposure mode [on]

dwFPSExposureTime DWORD* Pointer to a DWORD to get the valid exposure time in

nanoseconds.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 119

2.6.11 PCO_SetFPSExposureMode

Description This function sets the image timing of the camera so that themaximum frame rate and themaximum

exposure time for this frame rate is achieved. The maximum image frame rate (FPS = frames per

second) depends on the pixel rate and the image area selection.

If FPS exposure mode is on other timing commands are ignored.

Supported

camera type(s)

pco.1200

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetFPSExposureMode (

HANDLE ph, //in

WORD wFPSExposureMode, //in

DWORD* dwFPSExposureTime //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wFPSExposureMode WORD WORD to set the FPS-exposure mode:

• 0x0000 = FPS exposure mode [off]

• 0x0001 = FPS exposure mode [on], exposure time

is set automatically to 1/FPSmax

dwFPSExposureTime DWORD* Pointer to a DWORD to get the exposure time in

nanoseconds. The returned value is the exposure time that

will be valid if FPS exposure mode is on.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 120

2.6.12 PCO_GetTriggerMode

Description This function returns the current trigger mode setting of the camera.

Detailed description of trigger and acquire modes can be found in the respective camera manual.

In all trigger modes effective image exposure depends also on the acquire mode settings and the

acquire signal input.

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetTriggerMode (

HANDLE ph, //in

WORD* wTriggerMode //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wTriggerMode WORD* Pointer to a WORD variable to get the trigger mode:

• 0x0000 = [auto sequence]

• 0x0001 = [software trigger]

• 0x0002 = [external exposure start & software trigger]

• 0x0003 = [external exposure control]

• 0x0004 = [external synchronized]

• 0x0005 = [fast external exposure control]

• 0x0006 = [external CDS control]

• 0x0007 = [slow external exposure control]

• 0x0102 = [external synchronized HDSDI]

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 121

2.6.12.1 Explanation of available trigger modes

Function Description

Auto sequence An exposure of a new image is started automatically best

possible compared to the readout of an image and the

current timing parameters. If a CCD is used and images

are taken in a sequence, exposure and sensor readout are

started simultaneously. Signals at the trigger input line are

irrelevant.

Soft(ware) Trigger An exposure is only started by a force trigger command.

External Exposure Start

& Soft(ware) Trigger
A delay / exposure sequence is started depending on the

HW signal at the trigger input line or by a force trigger

command.

External exposure control An exposure sequence is started depending on the HW

signal at the trigger input line. The exposure time is defined

by the pulse length of the HW signal. The delay and

exposure time values defined by the set / request delay

and exposure command are ineffective. In double image

mode exposure time length of the first image is controlled

through the HW signal, exposure time of the second image

is given by the readout time of the first image.

External synchronized The external synchronization signal feeds a phase locked

loop (PLL) in the camera. The PLL adjusts itself

to the phase of the external synchronization signal.

The PLL can only lock to frequencies found in the

dwExtSyncFrequency table in the PCO_Description

Structure. The exposure times are generated based on

the frequency of the phase locked loop.

Advantages of the PLL solution:

• Reliability: in case of dropouts of the external

synchronization signal, the synchronization is kept

internally by the PLL signal with quite small deviation

• Noise immunity: interference on the signal can be

detected and discarded

• Flexibility: cameras can even be set to different

frame rates, as long as all frame rates are an integral

multiple of the synchronization frequency

Fast external exposure control Only available for pco.edge cameras in Rolling Shutter

mode. An exposure is started depending on the HW signal

at the trigger input line. The exposure time is defined by

the pulse length of the HW signal. A second image can be

triggered, while the first one is read out. This increases the

frame rate, but leads to destructive images, if the trigger

timing is not accurate: internal camera error correction is

inactive in this mode.

Continued on next page

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 122

Continued from previous page

Function Description

External CDS control Only available for pco.edge cameras in Global Shutter

PIVmode. The readout of the reset image can be triggered

separate to reduce the trigger delay.

Slow external exposure control Only available for pco.edge cameras in Rolling Shutter

mode. An exposure is started depending on the HW signal

at the trigger input line. The exposure time is defined

by the pulse length of the HW signal. A second image

can be triggered, while the first one is read out. This

mode is optimized for longer exposure times. Set exposure

time with PCO_SetDelayExposureTime to the expected

duration of exposure. A smaller trigger pulse width leads

to destructive images, while the image quality for a longer

trigger pulse width is improved.

External synchronized HDSDI Only available for pco.dimax in HDSDI output mode.

Ensure that HD/SDI output and image recording framerate

are absolutely synchronously.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 123

2.6.13 PCO_SetTriggerMode

Description This function sets the trigger mode of the camera. For a short description of the available trigger

modes, see table Explanation of available trigger modes. Detailed description of trigger and

acquire modes can be found in the respective camera manual. In all trigger modes effective image

exposure depends also on the acquire mode settings and acquire signal input.

The command will be rejected, if Recording State is [run], see PCO_GetRecordingState.

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetTriggerMode (

HANDLE ph, //in

WORD wTriggerMode //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wTriggerMode WORD WORD variable to set the trigger mode:

• 0x0000 = [auto sequence]

• 0x0001 = [software trigger]

• 0x0002 = [external exposure start & software trigger]

• 0x0003 = [external exposure control]

• 0x0004 = [external synchronized]

• 0x0005 = [fast external exposure control]

• 0x0006 = [external CDS control]

• 0x0007 = [slow external exposure control]

• 0x0102 = [external synchronized HDSDI]

Parameter

dependency

dwGeneralCapsDESC1: NO_EXTEXPCTRL, EXTERNAL_SYNC

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 124

2.6.14 PCO_ForceTrigger

Description This function starts an exposure, if the trigger mode is either [software trigger] or [extern exposure

& software trigger]. In all other trigger modes the command has no effect.

To accept a force trigger command the camera must be in PCO_SetRecordingState [run] and

camera busy state must be [not busy] (see PCO_GetCameraBusyStatus).

If a trigger command is not accepted by the camera it is lost and will not trigger future exposures.

• Due to response and processing times, e.g. caused by the interface and / or the operating

system on the computer, the delay between command and current trigger may be several

milliseconds.

• A force trigger command will be processed independent of the selected acquire mode and

independent of the state of the <acq enbl> input.

• Triggers are not accumulated or buffered. A trigger will be accepted only if the camera is

idle.

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_ForceTrigger (

HANDLE ph, //in

WORD* wTriggered //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wTriggered WORD* Pointer to a WORD variable to get the trigger state:

• 0x0000 = trigger command was unsuccessful because the

camera is busy

• 0x0001 = a new image exposure has been triggered

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 125

2.6.15 PCO_GetCameraBusyStatus

Description This function returns the current busy status of the camera. The busy status is according to the

<busy> hardware signal at the camera output and can be checked before a PCO_ForceTrigger

command to ensure that this command starts a new exposure. Due to response and processing

times caused by the interface and / or the operating system, the delay between the delivered status

and the current status may be several milliseconds. For exact synchronization to external events

the hardware signal <busy> must be used.

Supported

camera type(s)

pco.edge, pco.edge bi, pco.1600, pco.2000, pco.4000, pco.dicam

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetCameraBusyStatus (

HANDLE ph, //in

WORD* wCameraBusyState //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wCameraBusyState WORD* Pointer to a WORD variable to get the camera busy status:

• 0x0000 =Camera is [not busy], ready for a new trigger

command

• 0x0001 =Camera is [busy], not ready for a new trigger

command

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 126

2.6.16 PCO_GetPowerDownMode

Description This function returns the current state of the power downmode. Detailed description of the power

down mode can be found in the respective camera manual.

Supported

camera type(s)

pco.1600, pco.2000, pco.4000

Descriptor

dependency

wPowerDownModeDESC

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetPowerDownMode (

HANDLE ph, //in

WORD* wPowerDownMode //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wPowerDownMode WORD* Pointer to a WORD variable to get the power down mode:

• 0x0000 = [auto]

• 0x0001 = [user]

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 127

2.6.17 PCO_SetPowerDownMode

Description This function sets the power down mode of the camera. Descriptor flag wPowerDownModeDESC

indicates if power down mode is available and if the camera can switch the sensor into power

down mode for reduced dark current during long exposure times. By default power down mode

[auto] is selected and the camera selects the most suitable threshhold time for the installed sensor.

When power down mode is set to [user] the threshhold time can be set through function PCO_-

SetUserPowerDownTime.

Supported

camera type(s)

pco.1600, pco.2000, pco.4000

Descriptor

dependency

wPowerDownModeDESC

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetPowerDownMode (

HANDLE ph, //in

WORD wPowerDownMode //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wPowerDownMode WORD WORD variable to set the power down mode:

• 0x0000 = [auto]

• 0x0001 = [user]

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 128

2.6.18 PCO_GetUserPowerDownTime

Description This function returns the current power down threshold time for power down mode [user].

Supported

camera type(s)

pco.1600, pco.2000, pco.4000

Descriptor

dependency

wPowerDownModeDESC

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetUserPowerDownTime (

HANDLE ph, //in

DWORD* dwPowerDownTime //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

dwPowerDownTime DWORD* Pointer to a DWORD variable to get the power down threshold

time in ms.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 129

2.6.19 PCO_SetUserPowerDownTime

Description This function sets the power down threshold time for power down mode [user]. If the exposure

time is greater than the selected threshold time the sensor is switched into a special low energy

mode to reduce dark current effects. Because thewake-up of the camera from this special mode

needs some time the value of the wPowerDownTime should not be less then 1000 ms, which is

also the default value when power down mode is [auto].

Supported

camera type(s)

pco.1600, pco.2000, pco.4000

Descriptor

dependency

wPowerDownModeDESC

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetUserPowerDownTime (

HANDLE ph, //in

DWORD dwPowerDownTime //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

dwPowerDownTime DWORD DWORD variable to set the power down threshold time in ms.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 130

2.6.20 PCO_GetModulationMode

Description This function returns the current settings of themodulationmode and its corresponding parameters.

The modulation mode is an optional feature which is not available for all camera models. To

determine if modulation mode is available first check if second descriptor is loadable through flag

ENHANCED_DESCRIPTOR_2 in dwGeneralCapsDESC1 of PCO_Description Structure. Then the

presence of flag MODULATE in dwModulateCapsDESC2 of PCO_Description2 Structuremust be

checked.

Supported

camera type(s)

Available for special versions of pco.1600, pco.2000 and pco.4000

Descriptor

dependency

dwGeneralCapsDESC1: ENHANCED_DESCRIPTOR_2 dwModulateCapsDESC2: MODULATE

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetModulationMode (

HANDLE ph, //in

WORD* wModulationMode, //out

DWORD* dwPeriodicalTime, //out

WORD* wTimebasePeriodical, //out

DWORD* dwNumberOfExposures, //out

LONG* lMonitorOffset //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wModulationMode WORD* Pointer to a WORD variable to get the modulation mode:

• 0x0000 = [modulation mode off]

• 0x0001 = [modulation mode on]

dwPeriodicalTime DWORD* Pointer to a DWORD variable to get the periodical time.

Periodical time as a multiple of the time base unit: The

periodical time, delay and exposure time must meet the

following condition : tp - (te + td) > min per condition.

wTimebasePeriodical WORD* Pointer to a WORD to get the time base of the periodical

time:

• 0x0000 = [ns]

• 0x0001 = [µs]

• 0x0002 = [ms]

dwNumberOfExposures DWORD* Pointer to a DWORD variable to get the number of

exposures for one frame.

Continued on next page

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 131

Continued from previous page

Name Type Description

lMonitorOffset LONG* Pointer to a LONG variable to get the monitor offset

value. The MonitorOffset [ns] controls the offset for the

signal output line <status out> relative to the start of the

exposure time. The possible range is limited in a very

special way. See tm in the timing diagram (Modulation

Mode Timing Diagram):

• The negative limit can be set from tstd to 0

• The negative limit can be enlarged by adding a

delay

• The maximum negative monitor offset is limited to

20 µs. No matter how long the delay will be set

• The positive limit can be enlarged by longer

exposure times than the minimum exposure time

• The maximum positive monitor offset is limited to

20 µs; no matter how long the exposure will be set

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 132

2.6.20.1 Modulation Mode Timing Diagram

Figure 2.1: modulation mode.

Busy = signal on BNC plug ”status out”

Delay = internal signal

CCD Exposure = internal signal

Exp = signal on BNC plug ”status out”

ts: start time: after the initial trigger a starting sequence is worked off, then the exposures are

acquired and accumulated; 7.5 µs (pco.1600, pco.2000), 8 µs (pco.4000).

tstd: start time delay for monitor signal; 2 µs (pco.1600), 3 µs (pco.2000, pco.4000).

t0: exposure start.

values set by user pco.1600 pco.2000 pco.4000

td delay time (CCD) 0...100 ms 0...100 ms 0...100 ms 500 ns

steps

te exposure time (CCD) 500 ns...1 ms 500 ns...1 ms 500 ns...1 ms 500 ns

steps

tp
periodical time (only

for trigger “Auto Seq.”)
20 µs...100 ms 25 µs...100ms 50 µs...100 ms 500 ns

steps

tm monitor offset -15 µs...+20 µs -20 µs...+20 µs -20 µs...+20 µs 500 ns

steps

N number of exposures 1...500.000 1...100.000 1...100.000 steps of 1

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 133

Restrictive conditions:

for periodical time:

tp − (td + te) ≥ 10µs (pco.1600, pco.2000)

tp − (td + te) ≥ 25µs (pco.4000)
(2.1)

for monitor offset:

−(td + tstd)tm(te − 0 5µs) (2.2)

A monitor offset of ’0 µs’ causes a rising of the monitor output right at exposure start:

tm = 0µs ° t0 (2.3)

Considerations for good image quality:

• Only runtimes of less then 10 seconds are desirable.

• Totalized exposure time (N * te) should be limited to 100ms.

• Keep exposure time as short as possible.

• Use extensive CCD cooling, if possible.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 134

2.6.21 PCO_SetModulationMode

Description This function sets the modulation mode and its corresponding parameters.

The modulation mode is an optional feature which is not available for all camera models. To

determine if modulation mode is available first check if the second descriptor is available through

flag ENHANCED_DESCRIPTOR_2 in dwGeneralCapsDESC1 ofPCO_Description Structure. Then

the presence of flag MODULATE in dwModulateCapsDESC2 ofPCO_Description2 Structuremust

be checked.

Restrictions for the parameter values are defined through the timing values in the camera description

PCO_Description2 Structure.

Supported

camera type(s)

Available fpr special versions of pco.1600, pco.2000 and pco.4000

Descriptor

dependency

dwGeneralCapsDESC1: ENHANCED_DESCRIPTOR_2 dwModulateCapsDESC2: MODULATE

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetModulationMode (

HANDLE ph, //in

WORD wModulationMode, //in

DWORD dwPeriodicalTime, //in

WORD wTimebasePeriodical, //in

DWORD dwNumberOfExposures, //in

LONG lMonitorOffset //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wModulationMode WORD WORD variable to set the modulation mode:

• 0x0000 = [modulation mode off]

• 0x0001 = [modulation mode on]

dwPeriodicalTime DWORD DWORD variable to set the periodical time in time base

unit. The periodical time, delay and exposure time must

meet the following condition: tp - (te + td) > ’Min per

condition’.

wTimebasePeriodical WORD WORD variable to hold the time base of the perodical

time:

• 0x0000 = [ns]

• 0x0001 = [µs]

• 0x0002 = [ms]

Continued on next page

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 135

Continued from previous page

Name Type Description

dwNumberOfExposures DWORD DWORD variable to set the number of exposures for one

frame.

lMonitorOffset LONG LONG variable to set the monitor offset value in ns. The

MonitorOffset controls the offset for the signal output

line <status out> relative to the start of the exposure

time

• The range is limited through the timing values

• The maximum negative monitor offset is limited to

-20 µs

• The maximum positive monitor offset is limited to

20 µs). See Modulation Mode Timing Diagram

Parameter

dependency

dwMinPeriodicalTimeDESC2, dwMaxPeriodicalTimeDESC2

dwMinPeriodicalConditionDESC2, dwMaxNumberOfExposuresDESC2

lMinMonitorSignalOffsetDESC2, dwMaxMonitorSignalOffsetDESC2

dwMinPeriodicalStepDESC2, dwStartTimeDelayDESC2, dwMinMonitorStepDESC2

dwMinDelayModDESC2, dwMaxDelayModDESC2, dwMinDelayStepModDESC2

dwMinExposureModDESC2, dwMaxExposureModDESC2, dwMinExposureStepModDESC2

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 136

2.6.22 PCO_GetHWIOSignalCount

Description This function returns the number of hardware I/O signal lines that are available for the camera.

Function PCO_GetHWIOSignalDescriptor must be called to get a description of the available

options for a specific I/O signal line. With this information the current settings can be changed

with PCO_SetHWIOSignal and queried with PCO_GetHWIOSignal.

Supported

camera type(s)

pco.edge, pco.edge bi, pco.dimax, pco.dicam

Descriptor

dependency

dwGeneralCapsDESC1: HW_IO_SIGNAL_DESCRIPTOR

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetHWIOSignalCount (

HANDLE ph, //in

WORD* wNumSignals //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wNumSignals WORD* Pointer to a WORD variable to get the number of available hardware

I/O signal lines.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 137

2.6.23 PCO_GetHWIOSignalDescriptor

Description This function retrieves the description of a specific hardware I/O signal line. The number of available

hardware I/O signal lines can be queried with PCO_GetHWIOSignalCount.

Only predefined signals can be routed to specific signal lines. With the values returned in the

PCO_Single_Signal_Desc Structure structure available options for each I/O signal line can be

determined. With these options inmind thePCOsignal Structure for the call toPCO_SetHWIOSignal

can be prepared.

Optional parameters can be set for some of the predefined signals, allowing better control of the

signal. Optional Parameters are available, when one of the SIGNAL_DEF_PARAM bits is set in the

Signal definitions bits. Descriptions for the additional parameters can be found in the appropriate

listing, which is defined through the Signal functionality returned from the PCO_GetHWIOSignal

function.

Additional information about input / output lines can be found in the respective camera manual.

Supported

camera type(s)

pco.edge, pco.edge bi, pco.dimax, pco.dicam

Descriptor

dependency

dwGeneralCapsDESC1: HW_IO_SIGNAL_DESCRIPTOR

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetHWIOSignalDescriptor (

HANDLE ph, //in

WORD wSignalNum, //in

PCO_Single_Signal_Desc* pstrSignal //in,out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera

device.

wSignalNum WORD WORD variable to select the signal line to

query. This parameter must be in the range

of available hardware I/O signal lines.

pstrSignal PCO_Single_Signal_Desc* Pointer to a PCO_Single_Signal_Desc

Structure to get the capabilities of the

hardware I/O signal. On input the wSize

parameter of this structure must be filled

with the correct structure size in bytes.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 138

2.6.23.1 PCO_Single_Signal_Desc Structure

Name Type Description

wSize WORD Size of this structure

ZZwAlignDummy1 WORD Reserved

strSignalName char[4][25] List of available signals, which can be routed to

the selected I/O signal line. Each valid list entry

is an ASCII string with up to 25 characters. If

the list entry is an empty string this entry is not

valid. All valid entries can be selected through

the wSelected parameter of the PCO signal

Structure. At least the first list entry is always

valid.

wSignalDefinitions WORD Flags for signal definitions see table Signal

definitions bits

wSignalTypes WORD Flags for electrical I/O Standard availability, see

Signal I/O standard bits

wSignalPolarity WORD Flags for signal polarity availability, see Signal

polarity bits

wSignalFIlter WORD Flags for filter options availability, see Signal filter

option bits. Time t describes the minimum pulse

width of input signal

2.6.23.2 Signal definitions bits

Name Value Description

SIGNAL_DEF_ENABLE 0x00000001 I/O signal line can be enabled or disabled

SIGNAL_DEF_OUTPUT 0x00000002 I/O signal line is a status output line

0x00000004 Reserved

0x00000008 Reserved

SIGNAL_DEF_PARAM1 0x00000010 The signal for list entry [0] does need an additional

parameter when selected for I/O signal line

SIGNAL_DEF_PARAM2 0x00000020 The signal for list entry [1] does need an additional

parameter when selected for I/O signal line

SIGNAL_DEF_PARAM3 0x00000040 The signal for list entry [2] does need an additional

parameter when selected for I/O signal

SIGNAL_DEF_PARAM4 0x00000080 The signal for list entry [3] does need an additional

parameter when selected for I/O signal line

2.6.23.3 Signal I/O standard bits

Name Value Description

SIGNAL_TYPE_TTL 0x00000001 I/O signal line can be used as a standard TTL

signal

Continued on next page

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 139

Continued from previous page

Name Value Description

SIGNAL_TYPE_HL_SIG 0x00000002 I/O signal line can be used as a HighLevel signal:

• low level (0 V - 5 V)

• high level (10 V - VCC ; max. = 56 V)

SIGNAL_TYPE_CONTACT 0x00000004 I/O signal line can be used as input for a

pushbutton

SIGNAL_TYPE_RS485 0x00000008 I/O signal line can be used as a standard RS485

signal

2.6.23.4 Signal polarity bits

Name Value Description

SIGNAL_POL_HIGH 0x00000001 I/O signal line can be sensed for high level

SIGNAL_POL_LOW 0x00000002 I/O signal line can be sensed for low level

SIGNAL_POL_RISE 0x00000004 I/O signal line can be sensed for rising edges

SIGNAL_POL_FALL 0x00000008 I/O signal line can be sensed for falling edges

2.6.23.5 Signal filter option bits

Name Value Description

SIGNAL_FILTER_OFF 0x00000001 Filter can be switched off (t > 65 ns)

SIGNAL_FILTER_MED 0x00000002 Filter can be switched to medium (t > 1 us)

SIGNAL_FILTER_HIGH 0x00000004 Filter can be switched to high (t > 100 ms)

2.6.23.6 Signal functionality

Name Value Description

NONE 0x00000000 Signal is undefined

TRIGGER_INPUT 0x00000001 Signal is input for trigger

ACQUIRE_INPUT 0x00000002 Signal is input for acquire

BUSY_OUTPUT 0x00000003 Signal is output for camera busy state

EXPOSURE_OUTPUT 0x00000004 Signal is output for camera exposing state

READOUT_OUTPUT 0x00000005 Signal is output for camera readout state

SYNCH_INPUT 0x00000006 Signal is input for synchronization

EXPOSURE_OUTPUT_EXT 0x00000007 Signal is output for extended camera exposing

state. Suitable for a pco.edge in setup mode

Rolling Shutter. The additional parameter defines

enhanced signal timing see table Extended signal

timing rolling shutter.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 140

2.6.23.7 Extended signal timing rolling shutter

Name Value Description

HW_IO_SIGNAL_TIMING_

EXPOSURE_RS_FIRSTLINE
0x00000001 Exposure time of the first rolling shutter line

(tfirstline)

HW_IO_SIGNAL_TIMING_

EXPOSURE_RS_GLOBAL
0x00000002 Core time while all lines are exposing (tglobal)

HW_IO_SIGNAL_TIMING_

EXPOSURE_RS_LASTLINE
0x00000003 Exposure time of the last rolling shutter line

(tlastline)

HW_IO_SIGNAL_TIMING_

EXPOSURE_RS_ALLLINES
0x00000004 Complete exposure time from the start of first

until the end of the last rolling shutter line (alllines)

See respective camera manual for detailed description.

2.6.24 PCO_GetHWIOSignal

Description This function returns the current settings of a distinct hardware input/output (IO) signal line. To

select the setting for a signal line use PCO_SetHWIOSignal.

Supported

camera type(s)

pco.edge, pco.edge bi, pco.dimax, pco.dicam

Descriptior

dependency

dwGeneralCapsDESC1: HW_IO_SIGNAL_DESCRIPTOR

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetHWIOSignal (

HANDLE ph, //in

WORD wSignalNum, //out

PCO_Signal* pstrSignal //in,out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wSignalNum WORD Select the signal to query. This parameter must be in the

range of available hardware I/O signals.

pstrSignal PCO_Signal* Pointer to a PCO signal Structure to get the settings of

the hardware I/O signal. On input the wSize parameter of

this structure must be filled with the correct structure size in

bytes.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 141

2.6.25 PCO_SetHWIOSignal

Description This function selects the settings of a specific hardware IO signal line. To query the settings of a

specifc signal line please use PCO_GetHWIOSignal.

To determine the available options for each signal line use PCO_GetHWIOSignalDescriptor.

Supported

camera type(s)

pco.edge, pco.edge bi, pco.dimax, pco.dicam

Descriptor

dependency

dwGeneralCapsDESC1: HW_IO_SIGNAL_DESCRIPTOR

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetHWIOSignal (

HANDLE ph, //in

WORD wSignalNum, //in

PCO_Signal* pstrSignal //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wSignalNum WORD Selects the signal to set. This parameter must be in the range

of available hardware I/O signals.

pstrSignal PCO_Signal* Pointer to a PCO Signal structure filled with appropriate

parameters.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 142

2.6.25.1 PCO signal Structure

Name Type Description

wSize WORD Size of this structure

wSignalNum WORD Index of the signal

wEnabled WORD Enable state of the signal:

• 0x0000 = Signal is off

• 0x0001 = Signal is activate

wType WORD Electrical I/O Standard:

• 0x0001 = TTL

• 0x0002 = High Level TTL

• 0x0004 = Contact mode

• 0x0008 = RS485 differential

• 0x0080 = Two pin differential TTL

PinA=TTL, PinB=GND

wPolarity WORD Signal polarity:

• 0x0001 = High level

• 0x0002 = Low level

• 0x0004 = Rising edge

• 0x0008 = Falling edge

wFilter WORD Filter option:

• 0x0001 = No signal filtering (t > 65 ns)

• 0x0002 = MediumFilter (t > 1 µs)

• 0x0004 = High Filter (t > 100ms)

wSelected WORD Selected signal for this signal line. Choose one

out of the available signals defined in the PCO_-

Single_Signal_Desc Structure. e.g. Status Busy

or Status Exposure

ZzwReserved WORD Reserved

dwParameter[4] DWORD Additional parameter if the selected signal

requires one (when the SIGNAL_DEF_PARAM

Flag is set for the selected signal in the PCO_-

Single_Signal_Desc Structure). The additional

parameter extends the options for a distinct signal

functionality.

Continued on next page

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 143

Continued from previous page

Name Type Description

dwSignalFunctionality[4] DWORD Functionality of the selected signal. Information is

only valid when structure is readout. Should be

set to 0 on input.

• 0x0000 = None

• 0x0001 = Trigger input

• 0x0002 = Acquire input

• 0x0003 = Busy output

• 0x0004 = Exposure output

• 0x0005 = Readout output

• 0x0006 = Synchronization input,

• 0x0007 = Exposure output Rolling Shutter;

requires an additional parameter to define

the type of information. See table Extended

signal timing rolling shutter

ZzdwReserved[3] DWORD Reserved

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 144

2.6.26 PCO_GetHWIOSignalTiming

Description Gets the signal timing and selected signal functionality of the requested signal number. This

function call is optional. Please check camera description.

Supported

camera type(s)

pco.edge, pco.edge bi, pco.dimax, pco.dicam

Descriptor

dependency

dwGeneralCapsDESC1: HW_IO_SIGNAL_DESCRIPTOR

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetHWIOSignalTiming (

HANDLE ph, //in

WORD* pwSignalNum, //out

WORD* pwSelect, //out

DWORD* pdwSignalTiming //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

pwSignalNum WORD* WORD variable to set the signal to query (0,1,2,3,

AUTO_SELECT_TIMING_SIGNAL_7: auto select first signal

which offers timing) and to return the signal number.

pwSelect WORD* Pointer to query the signal functionality (0,1,2,3,

AUTO_SELECT_TIMING_SIGNAL_7: use currently selected)

and return the selected signal.

pdwSignalTiming DWORD* Pointer to DWORD getting the signal timing.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 145

2.6.27 PCO_SetHWIOSignalTiming

Description Sets the signal timing and selected signal functionality of the requested signal number. This

function call is optional. Please check camera description.

Supported

camera type(s)

pco.edge, pco.edge bi, pco.dimax, pco.dicam

Descriptor

dependency

dwGeneralCapsDESC1: HW_IO_SIGNAL_DESCRIPTOR

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetHWIOSignalTiming (

HANDLE ph, //in

WORD wSignalNum, //in

WORD wSelect, //in

DWORD dwSignalTiming //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wSignalNum WORD WORD variable to query the signal (Set to

AUTO_SELECT_TIMING_SIGNAL_7 for automatic selection.

Takes the first one found).

wSelect WORD WORD variable to query the signal functionality (0,1,2,3,

AUTO_SELECT_TIMING_SIGNAL_7: use currently selected)

(Set to AUTO_SELECT_TIMING_SIGNAL_7 for automatic

selection).

dwSignalTiming DWORD DWORD to set the signal timing.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 146

2.6.28 PCO_GetImageTiming

Description This function returns the current image timing in nanosecond resolution and additional trigger

system information.

The command will be rejected, if Recording State is [run], see PCO_GetRecordingState.

The maximum real trigger delay in ns can be calculated as:

Real Trigger Delay = TriggerSystemDelay_ns + TriggerSystemJitter_ns + TriggerDelay_ns

+ TriggerDelay_s*1000000000

The minimum real trigger delay in ns can be calculated as:

Real Trigger Delay = TriggerSystemDelay_ns + 0 + TriggerDelay_ns + TriggerDelay_s

*1000000000

Supported

camera type(s)

pco.edge, pco.edge bi, pco.dicam

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetImageTiming (

HANDLE ph, //in

PCO_ImageTiming* pstrImageTiming //in,out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

pstrImageTiming PCO_ImageTiming* Pointer to a PCO ImageTiming Structure to

get the timing of the current camera settings.

On input the wSize parameter of this structure

must be filled with the correct structure size in

bytes.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 147

2.6.28.1 PCO ImageTiming Structure

Name Type Description

wSize WORD Size of this structure

wDummy WORD Reserved

FrameTime_ns DWORD Nanoseconds part of the time to expose and readout

a single image

FrameTime_s DWORD Seconds part of the time to expose and readout a

single image

ExposureTime_ns DWORD Nanoseconds part of the exposure time

ExposureTime_s DWORD Seconds part of the exposure time

TriggerSystemDelay_ns DWORD System internal trigger delay in ns. This is the

time until a exposure is started after a trigger is

recognized, when delay time is set to zero.

TriggerSystemJitter_ns DWORD Maximum possible trigger jitter time in ns

TriggerDelay_ns DWORD Nanoseconds part of the trigger delay, which is set

through one of the timing functions

TriggerDelay_s DWORD Seconds part of the trigger delay, which is set

through one of the timing functions

ZZdwDummy [11] DWORD Reserved

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 148

2.6.29 PCO_GetCameraSynchMode

Description This function returns the current camera synchronizationmode. ThisMaster / Slave synchronization

mode is especially for multi-camera use.

When cameras are cascaded through an external synchronization line at least one camera must be

in master mode. This camera determines the timing of all other cameras in the line and therefore

is the only camera that accepts timing (exposure, delay,…) settings. All cameras which are set to

slave mode synchronize their exposures with the master camera.

To get reliable results the follow start / stop rules should be observed:

In order to get the same number of images in the recorder, please set all slaves to Recording

State [run] (see PCO_GetRecordingState), before the master is set. When setting Recording

State [stop] (see PCO_GetRecordingState), please stop the master as first. Please observe the

start / stop sequence.

Supported

camera type(s)

pco.dimax

Descriptor

dependency

dwGeneralCaps3: CAMERA_SYNC

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetCameraSynchMode (

HANDLE ph, //in

WORD* wCameraSynchMode //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wCameraSynchMode WORD* Pointer to a WORD variable to get the camera synchronization

mode:

• 0x0000 = [off]

• 0x0001 = [master]

• 0x0002 = [slave]

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 149

2.6.30 PCO_SetCameraSynchMode

Description This function sets the current camera synchronizationmode. ThisMaster / Slave synchronization

mode is specifically for multi-camera use.

When cameras are cascaded through an external synchronization line at least one camera must be

in master mode. This camera determines the timing of all other cameras in the line and therefore

is the only camera that accepts timing (exposure, delay,…) settings. All cameras which are set to

slave mode synchronize their exposures with the master camera. Synchronization must be set to

off for all cameras that are not connected to a cascaded line.

To get reliable results the follow start / stop rules should be observed:

In order to get the same number of images in the recorder, please set all slaves to Recording

State [run] (see PCO_GetRecordingState), before the master is set. When setting Recording

State [stop] (see PCO_GetRecordingState), please stop the master as first. Please observe the

start / stop sequence.

Supported

camera type(s)

pco.dimax

Descriptor

dependency

dwGeneralCaps3: CAMERA_SYNC

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetCameraSynchMode (

HANDLE ph, //in

WORD wCameraSynchMode //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wCameraSynchMode WORD WORD variable to set the camera synchronization mode:

• 0x0000 = [off]

• 0x0001 = [master]

• 0x0002 = [slave]

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 150

2.6.31 PCO_GetExpTrigSignalStatus

Description This function returns the current status of the <exp trig> input line.

See respective camera manual for more information about hardware signals.

Due to response and processing times caused by interface and / or operating system the delay

between the software delivered status and the current status may be several milliseconds. .

Supported

camera type(s)

pco.pixelfly usb, pco.ultraviolet, pco.1300, pco.1400, pco.edge bi, pco.dicam

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetExpTrigSignalStatus (

HANDLE ph, //in

WORD* wExpTrgSignal //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wExpTrgSignal WORD* Pointer to a WORD variable to get the current state of the <exp

trig> input line:

• 0x0000 = [off]

• 0x0001 = [on]

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 151

2.6.32 PCO_GetFastTimingMode

Description This function returns the current fast timing mode setting of the camera.

If the camera is set to fast timing mode image timing is changed. The interframing time between

two images is reduced to to 3.5 µs from the standard value of about 75 µs. While running in fast

timing mode image quality is reduced, which might be acceptable for special applications like

PIV.

Supported

camera type(s)

pco.dimax

Descriptor

dependency

dwGeneralCapsDESC1: FAST_TIMING

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetFastTimingMode (

HANDLE ph, //in

WORD* wFastTimingMode //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wFastTimingMode WORD* Pointer to a WORD variable to get the camera fast timingmode:

• 0x0000 = [off]

• 0x0001 = [on]

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 152

2.6.33 PCO_SetFastTimingMode

Description This function sets the fast timing mode of the camera.

If the camera is set to fast timing mode image timing is changed. The interframing time between

two images is reduced to to 3.5 µs from the standard value of about 75 µs. While running in fast

timing mode image quality is reduced, which might be acceptable for special applications like PIV.

Supported

camera type(s)

pco.dimax

Descriptor

dependency

dwGeneralCapsDESC1: FAST_TIMING

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetFastTimingMode (

HANDLE ph, //in

WORD wFastTimingMode //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wFastTimingMode WORD WORD variable to set the camera fast timing mode:

• 0x0000 = [off]

• 0x0001 = [on]

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 153

2.7 Recording Control

This function group can be used to control the recording state and also to get or set parameters

for enhanced recording control. During recording images can be grabbed with any of the image

readout functions of the SDK. Function PCO_AddBufferEx allows overlapped transfers, while

PCO_GetImageEx is a synchronous call.

Cameras without internal memory transfer the latest aquired image. Cameras with internal

memory store all images to the camera internalmemory (CamRam). If storagemode is [recorder],

the last aquired image is transferred.

If storage mode is set to [FIFO buffer mode], the images are transferred in the order in which they

have been written into the FIFO buffer.

The image transfer does not affect CamRam recording. CamRam recording does run independently

without the need of application intervention. The possible frame rate of the CamRam recording is

completely different to the interface transfer frame rate. The camera frame rate can be determined

by calling the PCO_GetCOCRuntime.

2.7.1 PCO_GetRecordingStruct

Description Recording control information is queried from the camera and the variables of the PCO_Recording

Structure are filled with this information. This function is a combined version of the functions,

which request information about the recording control related parameter. For a detailed description

of each parameter see the functions in this chapter.

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetRecordingStruct (

HANDLE ph, //in

PCO_Recording* strRecording //in,out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

Continued on next page

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 154

Continued from previous page

Name Type Description

strRecording PCO_Recording* Pointer to a PCO_Recording Structure.

• On input the wSize parameter of this structure

and also of all nested structures must be filled

with the correct structure size in bytes

• On output the structure is filled with the

requested information from the camera

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

2.7.2 PCO_SetRecordingStruct

Description This function does set the complete set of recording settings at once. For the sake of clarity it is

better to use the functions which change distinct parameter despite changing all settings at once.

An invalid value for one of the parameter will result in a failure response message. The command

will be rejected, if Recording State is [run], see PCO_GetRecordingState.

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetRecordingStruct (

HANDLE ph, //in

PCO_Recording* strRecording //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

strRecording PCO_Recording* Pointer to a PCO_Recording Structure filled with

appropriate parameters. The wSize parameter of this

structure and all nested structures must be filled with

the correct structure size in bytes.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 155

2.7.2.1 PCO_Recording Structure

Name Type Description

wSize WORD Size of this structure

wStorageMode WORD Storage mode:

• 0x0000 = [recorder]

• 0x0001 = [FIFO buffer]

wRecSubmorde WORD Recorder sub morde:

• 0x0000 = [sequence]

• 0x0001 = [ring buffer]

wRecState WORD Recording state:

• 0x0000 = [off]

• 0x0001 = [on]

wAcquMode WORD Acquire mode:

• 0x0000 = [internal auto]

• 0x0001 = [external]

• 0x0002 = [external frame]

• 0x0003 = reserved

• 0x0004 = [external sequence]

wAcquEnableStatus WORD Acquire status:

• 0x0000 = [disabled]

• 0x0001 = [enabled]

ucDay BYTE Timestamp data week day (1-31)

ucMonth BYTE Timestamp data month (1-12)

wYear WORD Timestamp data year

wHour WORD Timestamp data hour (0-23)

ucMin BYTE Timestamp data minutes (0-59)

ucSec BYTE Timestamp data seconds (0-59)

Continued on next page

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 156

Continued from previous page

Name Type Description

wTimeStampMode WORD Timestamp mode:

• 0x0000 = [no stamp]

• 0x0001 = [BCD coded]

• 0x0002 = [BCD coded + ASCII]

• 0x0003 = [ASCII]

wRecordStopEventMode WORD Record stop event mode:

• 0x0000 = [off]

• 0x0001 = [on]

dwRecordStopDelayImages DWORD Number of images which should pass by until stop

event is executed

wMetaDataMode WORD Meta data mode:

• 0x0000 = [off]

• 0x0001 = [enabled]

wMetaDataSize WORD Size of Meta Data in number of pixels

wMetaDataVersion WORD Version info for Meta Data

ZZwDummy1 WORD Reserved

dwAcquModeExNumberImages DWORD Number of images in one acquire sequence; Valid

when in acquire mode [external sequence]

dwAcquModeExReserved[4] DWORD Reserved

ZZwDummy[22] WORD Reserved

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 157

2.7.3 PCO_GetRecordingState

Description This function returns the current Recording State of the camera.

The Recording State can change from [run] to [stop] through:

• Call to function PCO_SetRecordingState [stop]

• PCO_SetStorageMode is [recorder], PCO_SetRecorderSubmode is [sequence] and active

segment is full

• PCO_SetStorageMode is [recorder], PCO_SetRecorderSubmode is [ring buffer], PCO_-

SetRecordStopEvent is [on] and the given number of images is recorded.

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetRecordingState (

HANDLE ph, //in

WORD* wRecState //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wRecState WORD* Pointer to a WORD variable to get the current recording state:

• 0x0000 = camera is stopped, recording state [stop]

• 0x0001 = camera is running, recording state [run]

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 158

2.7.4 PCO_SetRecordingState

Description This function sets the Recording State and waits until the state is valid. If the requested state

is already set the function will return a warning. If the state cannot be set within one second (+

current frametime for [stop]), the function will return an error.

The Recording State controls the run state of the camera. If the Recording State is [run], sensor

exposure and readout sequences are started depending on current camera settings (trigger mode,

acquire mode, external signals…). The Recording State has the highest priority compared to

functions like <acq enbl> or exposure trigger.

When the Recording State is set to [stop], sensor exposure and readout sequences are stopped.

If the camera is currently in [sensor_readout] state, this readout is finished, before camera run state

is changed to [sensor_idle]. If the camera is currently in [sensor_exposing] state, the exposure is

cancelled and camera run state is changed immediately to [sensor_idle]. In run state [sensor_idle]

the camera is running a special idle mode to prevent dark charge accumulation.

If any camera parameter was changed: before setting the Recording State to [run], the function

PCO_ArmCamera must be called. This is to ensure that all settings were correctly and are

accepted by the camera.

If a successful Recording State [run] command is sent and recording is started, the images from

a previous record to the active segment are lost.

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetRecordingState (

HANDLE ph, //in

WORD wRecState //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wRecState WORD WORD variable to set the active recording state:

• 0x0000 = stop camera and wait until recording state = [stop]

• 0x0001 = start camera and wait until recording state = [run]

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 159

2.7.5 PCO_GetStorageMode

Description This function returns the current storage mode of the camera. Storage mode is either [recorder]

or [FIFO buffer].

Supported

camera type(s)

pco.dimax, pco.pixelfly usb, pco.ultraviolet, pco.1200, pco.1300, pco.1400, pco.1600, pco.2000,

pco.4000, pco.edge bi

Descriptor

dependency

dwGeneralCapsDESC1: NO_RECORDER

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetStorageMode (

HANDLE ph, //in

WORD* wStorageMode //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wStorageMode WORD* Pointer to a WORD to get the current storage mode:

• 0x0000 = [recorder] mode

• 0x0001 = [FIFO buffer] mode

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 160

2.7.6 PCO_SetStorageMode

Description This function does set the storage mode of the camera. Storage mode can be set to either

[recorder] or [FIFO buffer] mode.

StorageMode [recorder] StorageMode [FIFO buffer]

Images are recorded and stored in the

current selected segment of the camera

internal memory (CamRAM)

Camera internal memory (CamRAM) is used

as huge FIFO buffer to bypass short

bottlenecks in data transmission

If PCO_SetRecorderSubmode is [sequence]

recording is stopped, when the last

buffer in the segment is reached

If buffer overflows, the oldest images

are overwritten

If PCO_SetRecorderSubmode is [ring buffer]

the oldest image is overwritten,

when the segment is full

While PCO_SetRecordingState is [run] the

oldest image is transferred on an image

request

While PCO_SetRecordingState is [run]

the most recent image is transferred on

an image request

When PCO_SetRecordingState is [stop] the

recorded and not already transferred images

can be read from the camera memory using

an image number index. Image number 1

is always the oldest image in the segment

When PCO_SetRecordingState is [stop]

the recorded images can be readout from the

camera memory using an image number index.

Image number 1 is always the oldest image

in the segment

No PCO_SetRecorderSubmode available

Supported

camera type(s)

pco.dimax, pco.pixelfly usb, pco.ultraviolet, pco.1200, pco.1300, pco.1400, pco.1600, pco.2000,

pco.4000, pco.edge bi

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetStorageMode (

HANDLE ph, //in

WORD wStorageMode //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wStorageMode WORD WORD variable to set the current storage mode:

• 0x0000 = [recorder] mode

• 0x0001 = [FIFO buffer] mode

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 161

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

2.7.7 PCO_GetRecorderSubmode

Description This function returns the current recorder submode of the camera. Recorder submode is only

available if the storage mode is set to [recorder]. Recorder submode is either [sequence] or [ring

buffer].

Supported

camera type(s)

pco.dimax, pco.pixelfly usb, pco.ultraviolet, pco.1200, pco.1300, pco.1400, pco.1600, pco.2000,

pco.4000, pco.edge bi

Descriptor

dependency

dwGeneralCapsDESC1: NO_RECORDER

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetRecorderSubmode (

HANDLE ph, //in

WORD* wRecSubmode //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wRecSubmode WORD* Pointer to a WORD to get the current recorder submode:

• 0x0000 = [sequence]

• 0x0001 = [ring buffer]

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 162

2.7.8 PCO_SetRecorderSubmode

Description This function sets the recorder submode of the camera. Recorder submode is only available if

PCO_SetStorageMode is set to [recorder]. Recorder submode can be set to [sequence] or [ring

buffer].

RecorderSubmode: [sequence] RecorderSubmode: [ring buffer]

Recording is stopped, when the last

buffer in the segment is reached

Camera records continuously into ring buffer

No images are overwritten The oldest images are overwritten, if a buffer

overflows occures due to long recording times

Recording can be stopped by software Recording must be stopped by software or with an

stop event

Supported

camera type(s)

pco.dimax, pco.pixelfly usb, pco.ultraviolet, pco.1200, pco.1300, pco.1400, pco.1600, pco.2000,

pco.4000, pco.edge bi

Descriptor

dependency

dwGeneralCapsDESC1: NO_RECORDER

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetRecorderSubmode (

HANDLE ph, //in

WORD wRecSubmode //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wRecSubmode WORD WORD variable to set the active recorder sub mode:

• 0x0000 = [sequence]

• 0x0001 = [ring buffer]

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 163

2.7.9 PCO_GetAcquireMode

Description This function returns the current acquire mode of the camera. Acquire mode can be either [auto],

[external] or [external modulate].

Supported

camera type(s)

pco.edge, pco.edge bi, pco.panda, pco.dimax, pco.pixelfly usb, pco.ultraviolet, pco.1200, pco.1300,

pco.1400, pco.1600, pco.2000, pco.4000, pco.dicam

Descriptor

dependency

dwGeneralCapsDESC1: NO_ACQUIREMODE

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetAcquireMode (

HANDLE ph, //in

WORD* wAcquMode //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wAcquMode WORD* Pointer to a WORD variable to get the current acquire mode:

• 0x0000 = [auto]

All images will be acquired and stored. The external <acq enbl>

input is ignored

• 0x0001 = [external]

The external control input <acq enbl> is a static enable signal

for image acquisition. Depending on the I/O configuration a

high or low level at the external <acq enbl> input does set the

acquire enable state to TRUE. If the acquire enable state is

TRUE exposure triggers are accepted and images are acquired.

If the acquire enable state is FALSE, all exposure triggers are

ignored and no images will be acquired and stored

• 0x0002 = [external modulate]

The external control input <acq enbl> is a dynamic frame

start signal. Depending on the I/O configuration a rising or

falling edge at the <acq enbl> input will start a single frame in

modulation mode

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 164

2.7.10 PCO_SetAcquireMode

Description This function sets the acquire mode of the camera. Acquire mode can be either [auto], [external]

or [external modulate].

Supported

camera type(s)

pco.edge, pco.edge bi, pco.panda, pco.dimax, pco.pixelfly usb, pco.ultraviolet, pco.1200, pco.1300,

pco.1400, pco.1600, pco.2000, pco.4000, pco.dicam

Descriptor

dependency

dwGeneralCapsDESC1: NO_ACQUIREMODE

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetAcquireMode (

HANDLE ph, //in

WORD wAcquMode //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wAcquMode WORD* WORD variable to set the acquire mode:

• 0x0000 = [auto]

All images will be acquired and stored. The external <acq enbl>

input is ignored

• 0x0001 = [external]

The external control input <acq enbl> is a static enable signal

for image acquisition. Depending on the I/O configuration a

high or low level at the external <acq enbl> input does set the

acquire enable state to TRUE. If the acquire enable state is

TRUE exposure triggers are accepted and images are acquired.

If the acquire enable state is FALSE, all exposure triggers are

ignored and no images will be acquired and stored

• 0x0002 = [external modulate]

The external control input <acq enbl> is a dynamic frame

start signal. Depending on the I/O configuration a rising or

falling edge at the <acq enbl> input will start a single frame in

modulation mode

Parameter

dependency

dwGeneralCapsDESC1: ENHANCED_DESCRIPTOR_2

dwModulateCapsDESC2: MODULATE

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 165

2.7.11 PCO_GetAcquireModeEx

Description This function returns the current acquire mode of the camera. Acquire mode can be either [auto],

[external], [external modulate] or [sequence trigger]. This function is an extended version of the

PCO_GetAcquireMode functionwith an additional parameter dwNumberImages, which is needed

for the [sequence trigger] mode.

Supported

camera type(s)

pco.edge, pco.edge bi, pco.dicam

Descriptor

dependency

dwGeneralCapsDESC1: NO_ACQUIREMODE, EXT_ACQUIRE

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetAcquireModeEx (

HANDLE ph, //in

WORD* wAcquMode, //out

DWORD* dwNumberImages, //out

DWORD* dwReserved //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wAcquMode WORD* Pointer to a WORD variable to get the acquire mode:

• 0x0000 = [auto]

All images will be acquired and stored. The external <acq

enbl> input is ignored

• 0x0001 = [external]

The external control input <acq enbl> is a static enable

signal for image acquisition. Depending on the I/O

configuration a high or low level at the external <acq

enbl> input does set the acquire enable state to TRUE.

If the acquire enable state is TRUE exposure triggers are

accepted and images are acquired. If the acquire enable

state is FALSE, all exposure triggers are ignored and no

images will be acquired and stored

• 0x0002 = [external modulate]

The external control input <acq enbl> is a dynamic frame

start signal. Depending on the I/O configuration a rising

or falling edge at the <acq enbl> input will start a single

frame in modulation mode

• 0x0004 = [sequence trigger]

The external control input <acq enbl> is a dynamic

sequence start signal. Depending on the I/O

configuration a rising or falling edge at the <acq

enbl> input will start a sequence of images until the

current number of images is acquired. Additional

triggers during the sequence are rejected

Continued on next page

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 166

Continued from previous page

Name Type Description

dwNumberImages DWORD* Pointer to a DWORD variable to get the number of images to

acquire: Number of images, which will be acquired when a

rising or falling edge at the acquire input triggers a sequence.

This parameter is only valid for acquire mode [sequence

trigger].

dwReserved DWORD* Reserved. Set to NULL at input.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 167

2.7.12 PCO_SetAcquireModeEx

Description This function sets the acquire mode of the camera. Acquire mode can be either [auto], [external],

[external modulate] or [sequence trigger]. This function is an extended version of the PCO_-

SetAcquireMode function with an additional parameter dwNumberImages, which is needed for

the [sequence trigger] mode.

Supported

camera type(s)

pco.edge, pco.edge bi, pco.dicam

Descriptor

dependency

dwGeneralCapsDESC1: NO_ACQUIREMODE, EXT_ACQUIRE

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetAcquireModeEx (

HANDLE ph, //in

WORD wAcquMode, //in

DWORD dwNumberImages, //in

DWORD* dwReserved //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wAcquMode WORD WORD variable to set the acquire mode:

• 0x0000 = [auto]

All images will be acquired and stored. The external <acq

enbl> input is ignored

• 0x0001 = [external]

The external control input <acq enbl> is a static enable

signal for image acquisition. Depending on the I/O

configuration a high or low level at the external <acq

enbl> input does set the acquire enable state to TRUE.

If the acquire enable state is TRUE exposure triggers are

accepted and images are acquired. If the acquire enable

state is FALSE, all exposure triggers are ignored and no

images will be acquired and stored

• 0x0002 = [external modulate]

The external control input <acq enbl> is a dynamic frame

start signal. Depending on the I/O configuration a rising

or falling edge at the <acq enbl> input will start a single

frame in modulation mode

• 0x0004 = [sequence trigger]

The external control input <acq enbl> is a dynamic

sequence start signal. Depending on the I/O

configuration a rising or falling edge at the <acq

enbl> input will start a sequence of images until the

current number of images is acquired. Additional

triggers during the sequence are rejected

Continued on next page

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 168

Continued from previous page

Name Type Description

dwNumberImages DWORD DWORD to set the number of images to acquire: Number of

images, which will be acquired when a rising or falling edge at

the acquire input triggers a sequence. This parameter is only

valid for acquire mode [sequence trigger].

dwReserved DWORD* Pointer to a DWORD array (4 members for future use): Set array

values to zero. A NULL-pointer is also accepted.

Parameter

dependency

dwGeneralCapsDESC1: ENHANCED_DESCRIPTOR_2

dwModulateCapsDESC2: MODULATE

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 169

2.7.13 PCO_GetAcqEnblSignalStatus

Description This function returns the current status of the external <acq enbl> input. Depending on the I/O

configuration a high or low level at the external <acq enbl> input does set the acquire enable state

to TRUE.

Due to response and processing times the delay between the delivered status and the current

status may be several 10 ms e.g. caused by the interface and/or the operating system. If timing

is critical it is strongly recommended to use other trigger modes.

Supported

camera type(s)

pco.1600, pco.2000, pco.4000, pco.edge bi, pco.dicam

Descriptor

dependency

dwGeneralCapsDESC1: NO_ACQUIREMODE

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetAcqEnblSignalStatus (

HANDLE ph, //in

WORD* wAcquEnableState //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wAcquEnableState WORD* Pointer to a WORD to get the acquire enable state:

• 0x0000 = [FALSE]

• 0x0001 = [TRUE]

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 170

2.7.14 PCO_GetAcquireControl

Description Gets the acquire control flags of the camera.

Supported

camera type(s)

pco.edge bi, pco.dicam

Descriptor

dependency

dwGeneralCapsDESC1: NO_ACQUIREMODE

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetAcquireControl (

HANDLE ph, //in

DWORD* dwAcquCtrlFlags, //out

DWORD* dwReserved, //out

WORD wNumReserved //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

dwAcquCtrlFlags DWORD* Pointer to a DWORD variable to receive the acquire ctrl flags.

dwReserved DWORD* Pointer to x DWORDs to receive future settings (actually set to

zero, pointer can be NULL).

wNumReserved WORD WORD to set the number of DWORDs for future settings (actually

set to zero, pointer can be NULL).

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 171

2.7.15 PCO_SetAcquireControl

Description Sets the acquire control flags of the camera.

Supported

camera type(s)

pco.edge bi, pco.dicam

Descriptor

dependency

dwGeneralCapsDESC1: NO_ACQUIREMODE

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetAcquireControl (

HANDLE ph, //in

DWORD dwAcquCtrlFlags, //in

DWORD* dwReserved, //in

WORD wNumReserved //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

dwAcquCtrlFlags DWORD DWORD variable to set the acquire ctrl flags.

dwReserved DWORD* Pointer to x DWORDs to set future settings (actually set to zero,

pointer can be NULL).

wNumReserved WORD WORD to set the number of DWORDs for future settings (actually

set to zero, pointer can be NULL).

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 172

2.7.16 PCO_GetMetaDataMode

Description This function returns the current Meta Data mode of the camera and information about size and

version of the Meta Data block.

When Meta Data mode is enabled, a Meta Data block with additional information is added at

the end of each image. The internal buffers allocated with PCO_AllocateBuffer are adapted

automatically. If the buffers are allocated externally, further line(s) must be added, where the

number of lines depends on horizontal resolution and the size of the additional Meta Data block.

Supported

camera type(s)

pco.dimax, pco.edge, pco.edge bi, pco.dicam

Descriptor

dependency

dwGeneralCapsDESC1: METADATA

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetMetaDataMode (

HANDLE ph, //in

WORD* wMetaDataMode, //out

WORD* wMetaDataSize, //out

WORD* wMetaDataVersion //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wMetaDataMode WORD* Pointer to a WORD to get the Meta Data mode:

• 0x0000 = [off]

• 0x0001 = [on]

wMetaDataSize WORD* Pointer to a WORD variable to get the size of the Meta Data

block, which will be added to the image (size of Meta Data

block in additional pixels).

wMetaDataVersion WORD* Pointer to a WORD variable to get the version of the Meta

Data mode.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 173

2.7.17 PCO_SetMetaDataMode

Description This function does to set the mode for Meta Data and returns information about size and version

of the Meta Data block.

When Meta Data mode is set to [on], a Meta Data block with additional information is added

at the end of each image. The internal buffers allocated with PCO_AllocateBuffer are adapted

automatically. If the buffers are allocated externally, the user is responsible to add further line(s),

where the number of lines depends on horizontal resolution and the size of the additional Meta

Data block.

Note: Meta Data mode must not be changed during one session. Failure to follow this rule might

result in an application crash.

Supported

camera type(s)

pco.dimax, pco.edge, pco.edge bi, pco.dicam

Descriptor

dependency

dwGeneralCapsDESC1: METADATA

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetMetaDataMode (

HANDLE ph, //in

WORD wMetaDataMode, //in

WORD* wMetaDataSize, //out

WORD* wMetaDataVersion //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wMetaDataMode WORD WORD variable to set the Meta Data mode:

• 0x0000 = [off]

• 0x0001 = [on]

wMetaDataSize WORD* Pointer to a WORD variable to get the size of the Meta Data

block, which will be added to the image (size of Meta Data

block in additional pixels).

wMetaDataVersion WORD* Pointer to a WORD variable to get the version of the Meta

Data mode.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 174

2.7.18 PCO_GetRecordStopEvent

Description This function returns the current record stop event mode and the number of images, which will

be recorded after a recorder stop event is triggered. The record stop event mode is only valid, if

storage mode is [recorder] and recorder submode is [ring buffer].

Supported

camera type(s)

pco.1200, pco.dimax

Descriptor

dependency

dwGeneralCapsDESC1: RECORD_STOP

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetRecordStopEvent (

HANDLE ph, //in

WORD* wRecordStopEventMode, //out

DWORD* dwRecordStopDelayImages //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wRecordStopEventMode WORD* Pointer to a WORD variable to get the record stop

event mode:

• 0x0000 = [off]

• 0x0001 = [software]

Trigger stop event by command

• 0x0002 = [extern]

The external control input <acq enbl> is a

dynamic trigger signal for the stop event.

Depending on the I/O configuration a rising

or falling edge at the <acq enbl> input will

trigger the stop event. The stop event can

also be triggered by software command

dwRecordStopDelayImages DWORD* Pointer to a DWORD variable to get the number of

images recorded after the record stop event is

triggered.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 175

2.7.19 PCO_SetRecordStopEvent

Description This function does set the record stop event mode and as an additional parameter the number of

images, which will be recorded after a recorder stop event is triggered.

The record stop event mode is useful to record a series of images with the ability to review the

scene before and after the stop event.

A record stop event can be triggered through the software command PCO_StopRecord or a signal

at the <acq enbl> input. After the stop event is triggered the camera records the configured number

of images and stops after that. The record stop event function can only be used if storage mode

is set to [recorder] and recorder submode is set to [ring buffer].

Due to internal timing constrains the current number of images taken after the event may differ by

+/- 1 from the configured number.

Supported

camera type(s)

pco.1200, pco.dimax

Descriptor

dependency

dwGeneralCapsDESC1: RECORD_STOP

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetRecordStopEvent (

HANDLE ph, //in

WORD wRecordStopEventMode, //in

DWORD dwRecordStopDelayImages //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wRecordStopEventMode WORD WORD variable to set the record stop event mode:

• 0x0000 = [off]

• 0x0001 = [software]

Trigger stop event by command

• 0x0002 = [extern]

The external control input <acq enbl> is a

dynamic trigger signal for the stop event.

Depending on the I/O configuration a rising

or falling edge at the <acq enbl> input will

trigger the stop event. The stop event can

also be triggered by software command

dwRecordStopDelayImages DWORD DWORD variable to set the number of images

recorded after the record stop event occurred.

If the given number of images is recorded, the

current recording will be stopped automatically.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 176

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

2.7.20 PCO_StopRecord

Description This function does generate a stop event for the record stop eventmode. See alsoPCO_GetRecordStopEvent

and PCO_SetRecordStopEvent.

Due to internal timing constrains the current number of images taken after the event may differ by

+/- 1 from the configured number.

Supported

camera type(s)

pco.1200, pco.dimax

Descriptor

dependency

dwGeneralCapsDESC1: RECORD_STOP

Prototype
SC2_SDK_FUNC int WINAPI PCO_StopRecord (

HANDLE ph, //in

WORD* wReserved0, //in

DWORD* dwReserved1 //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wReserved0 WORD* Reserved for future use, set to zero.

dwReserved1 DWORD* Reserved for future use, set to zero.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 177

2.7.21 PCO_SetDateTime

Description This function does set date and time information for the internal camera clock, which is used for

the timestamp function. When powering up the camera the camera clock is reset and all date and

time information is set to zero. If timestamp data should be synchronized with the PC time, this

function must be called at least once. It might be necessary to call the function again in distinct

time intervals, because some deviation between PC time and camera time might occur after some

time. When this function is called the [ms] and [µs] values of the camera clock are set to zero. All

parameter values must be set in packed BCD code.

The PCO_SetDateTime function is called during a PCO_OpenCamera call to synchronize PC

time with camera time.

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetDateTime (

HANDLE ph, //in

BYTE ucDay, //in

BYTE ucMonth, //in

WORD wYear, //in

WORD wHour, //in

BYTE ucMin, //in

BYTE ucSec //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

ucDay BYTE BYTE variable to set the day of month (1 - 31).

ucMonth BYTE BYTE variable to set the month (1 - 12).

wYear WORD WORD variable to set the year (4 digits e.g. 2023).

wHour WORD WORD variable to set the hour (0 - 24).

ucMin BYTE BYTE variable to set the minute (0 - 60).

ucSec BYTE BYTE variable to set the second (0 - 60).

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

Example 10th November 2023, 14h 15min 35s

PCO_SetDateTime (ph, 10, 11, 2023, 14, 15, 35);

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 178

2.7.22 PCO_GetTimestampMode

Description This function returns the current timestamp mode. To obtain information about the recording time

of images a timestamp can be included in the raw image data. This timestamp consists of a

continuous image number and the date and time information of the camera clock. The first 14

pixels of the image data array are used to hold this information. Image numbering always starts

from 1. In mode [binary] the timestamp information is packed BCD coded in the lower byte of each

pixel value, so every pixel holds 2 digits of information. If the bit alignment of the camera is set to

[MSB aligned] the pixel value must be shifted to the right before decoding of data can be done.

In mode [ASCII] the information is written as ASCII text replacing the original image data. An 8 by

8 pixel matrix is used per ASCII digit showing white on black characters. There aIso exists mode

[binary+ASCII] which is a combination of the both methods described above.

Format of BCD coded pixels:

Pixel 1 Pixel 2 Pixel 3 Pixel 4 Pixel 5 Pixel 6 Pixel 7

Image

counter

(MSB)

(00...99)

Image

counter

(MSB)

(00...99)

Image

counter

(MSB)

(00...99)

Image

counter

(MSB)

(00...99)

Year

(MSB)

(20)

Year

(LSB)

(03...99)

Month

(20)

Pixel 8 Pixel 9 Pixel 10 Pixel 11 Pixel 12 Pixel 13 Pixel 14

Day

(01...31)

Hour

(00...23)

Minutes

(00...59)

Seconds

(00...59)

µs *10.000

(00...99)

µs *100

(00...99)

µs

(00...90)

Format of ASCII text:

Number, date and time are separated by blanks.

Length Value range

image number: 8 digits [1...99999999]

date: 9 digits [01JAN2003...31DEZ2099]

time: 15 digits [00:00:00.000000...23:59:59.999990]

Length Value range

image number: 8 digits [1...99999999]

date: 9 digits [01JAN2003...31DEZ2099]

time: 15 digits [00:00:00.000000 ...

23:59:59.999990]

Supported

camera type(s)

All cameras

Descriptor

dependency

dwGeneralCapsDESC1: NO_TIMESTAMP

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 179

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetTimestampMode (

HANDLE ph, //in

WORD* wTimeStampMode //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wTimeStampMode WORD* Pointer to a WORD variable to get the timestamp mode:

• 0x0000 = [off]

• 0x0001 = [binary] BCD coded timestamp in the first 14

pixel

• 0x0002 = [binary+ASCII] BCD coded timestamp in the

first 14 pixel + ASCII text

• 0x0003 = [ASCII] ASCII text only

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 180

2.7.23 PCO_SetTimestampMode

Description This function does set the timestamp mode of the camera. Details about the timestamp modes

are explained in the previous command PCO_GetTimestampMode.

Supported

camera type(s)

All cameras

Descriptor

dependency

dwGeneralCapsDESC1: NO_TIMESTAMP

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetTimestampMode (

HANDLE ph, //in

WORD wTimeStampMode //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wTimeStampMode WORD WORD variable to set the timestamp mode:

• 0x0000 = [off]

• 0x0001 = [binary] BCD coded timestamp in the first 14

pixel

• 0x0002 = [binary+ASCII] BCD coded timestamp in the

first 14 pixel + ASCII text

• 0x0003 = [ASCII] ASCII text only (see camera descriptor

for availability)

Parameter

dependency

dwGeneralCapsDESC1: TIMESTAMP_ASCII_ONLY

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 181

2.8 Storage Control

This function group can be used to get or set parameters regarding the camera internal memory

(CamRAM). The camera internal memory is arranged as an array with four segments.

The overall size of the internal memory can be readout, distributed to any of the four memory

segments and the active segment can be selected. Each segment can store images with individual

settings. In default state all memory is distributed to segment 1 and segment 1 is also set as the

active segment.

Segment size is always set as a multiple of CamRAM pages with a predefined page size. One

CamRAM page is the smallest unit for RAM segmentation as well as for storing images. The size

reserved for one image is also calculated as a multiple of whole pages. Therefore some unused

RAMmemory exists for each image, if the CamRAM page size is not exactly a multiple of the image

size. The number of CamRAM pages needed for one image is calculated as image size in pixel

divided by CamRAM page size. The result must be rounded up to the next integer. With this value

of ’pages per image’ the number of images fitting into one segment can be calculated.

Because camera internal structures must be changed when parameters in this group are set, the

setting can only be done, if PCO_SetRecordingState is [stop] and must be followed by a PCO_-

ArmCamera command.

All storage functions can only be used with cameras which have internal recorder memory. Flag

NO_RECORDER must not be set in the camera descriptor.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 182

2.8.1 PCO_GetStorageStruct

Description Information about camera internal memory (CamRAM) is queried from the camera and the variables

of the PCO_Storage Structure are filled with this information. This function is a combined version

of the functions, which request information about the current settings of storage related parameter.

For a detailed description of each parameter see the functions in this chapter.

Supported

camera type(s)

pco.dimax, pco.1200, pco.1600, pco.2000, pco.4000, pco.dicam

Descriptor

dependency

dwGeneralCapsDESC1: NO_RECORDER

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetStorageStruct (

HANDLE ph, //in

PCO_Storage* strStorage //in,out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

strStorage PCO_Storage* Pointer to a PCO_Storage Structure:

• On input the wSize parameter of this structure and

also of all nested structures must be filled with the

correct structure size in bytes

• On output the structure is filled with the requested

information from the camera

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 183

2.8.2 PCO_SetStorageStruct

Description This function does set the complete set of storage settings at once. For the sake of clarity it is

better to use the functions which change distinct parameter despite changing all settings at once.

An invalid value for one of the parameter will result in a failure response message.

The command will be rejected, if Recording State is [run], see PCO_GetRecordingState.

Supported

camera type(s)

pco.dimax, pco.1200, pco.1600, pco.2000, pco.4000, pco.dicam

Descriptor

dependency

dwGeneralCapsDESC1: NO_RECORDER

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetStorageStruct (

HANDLE ph, //in

PCO_Storage* strStorage //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

strStorage PCO_Storage* Pointer to a PCO_Storage Structure filled with appropriate

parameters. The wSize parameter of this structure and

also of all nested structures must be filled with the correct

structure size in bytes.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 184

2.8.2.1 PCO_Storage Structure

Name Type Description

wSize WORD Size of this structure

ZZwAlignDummy1 WORD Reserved

dwRamSize DWORD Size of camera internal memory in CamRAM pages

wPageSize WORD CamRAM page size in pixel

ZZwAlignDummy4 WORD Reserved

dwRamSegSize[4] DWORD List of memory segment sizes in CamRAM pages

ZZdwDummyrs[20] DWORD Reserved

wActSeg WORD Number of active segment

ZZwDummy[] WORD Reserved

2.8.3 PCO_GetCameraRamSize

Description This function returns the size of the camera internal memory in CamRAM pages and the CamRAM

page size in pixels.

Supported

camera type(s)

pco.dimax, pco.1200, pco.1600, pco.2000, pco.4000

Descriptor

dependency

dwGeneralCapsDESC1: NO_RECORDER

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetCameraRamSize (

HANDLE ph, //in

DWORD* dwRamSize, //out

WORD* wPageSize //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

dwRamSize DWORD* Pointer to a DWORD variable to get the size of camera internal memory

in CamRAM pages.

wPageSize WORD* Pointer to a WORD variable to get the CamRAM page size in pixels.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 185

2.8.4 PCO_GetCameraRamSegmentSize

Description This function returns a list of memory segment sizes in CamRAM pages.

Supported

camera type(s)

pco.dimax, pco.1200, pco.1600, pco.2000, pco.4000

Descriptor

dependency

dwGeneralCapsDESC1: NO_RECORDER

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetCameraRamSegmentSize (

HANDLE ph, //in

DWORD* dwRamSegSize //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

dwRamSegSize DWORD* Pointer to a DWORD array to get the segment sizes. The array must

have at least 4 DWORD entries.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

Example see PCO_SetCameraRamSegmentSize

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 186

2.8.5 PCO_SetCameraRamSegmentSize

Description This function does set segment size in CamRAM pages of the four memory segments. The

segment size must be large enough to hold at least two images. All image data in all segments is

cleared.

All previously recorded images will be lost.

• The sum of all segment sizes must not be larger than the total size of the RAM (as multiples

of pages).

• A single segment size can have the value 0x0000, but the sum of all four segments must be

bigger than the size of two images.

• Pay attention that the array dwRamSegSize is zero based indexed while the segment number

is 1 based, e.g. RAM size of segment 1 is stored in dwRamSegSize[0].

• The command will be rejected, if Recording State is [run], see PCO_GetRecordingState.

Supported

camera type(s)

pco.dimax, pco.1200, pco.1600, pco.2000, pco.4000

Descriptor

dependency

dwGeneralCapsDESC1: NO_RECORDER

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetCameraRamSegmentSize (

HANDLE ph, //in

DWORD* dwRamSegSize //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

dwRamSegSize DWORD* Pointer to a DWORD array to set the segment sizes. The array must

have at least 4 DWORD entries.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 187

Example
#define MAXSEGMENTS 4

HANDLE hHandleCam;

...

DWORD dwRamSegSize[MAXSEGMENTS];

int err = PCO_GetCameraRamSegmentSize(hHandleCam, &dwRamSegSize[0]);

dwRamSegSize[0] = dwRamSegSize[0] + dwRamSegSize[1] + dwRamSegSize[2]←↩
+ dwRamSegSize[3];

dwRamSegSize[1] = dwRamSegSize[2] = dwRamSegSize[3] = 0; Set all ←↩
memory to segment 1.

Our camera has got 4 segments (up to now). They start with Segment 1,←↩
up to 4.

In programming languages every array starts with index 0! So, segment←↩
number 1

has the index 0, seg. 2 has 1, 3 has 2 and 4 has 3.

err = PCO_SetCameraRamSegmentSize(hHandleCam, &dwRamSegSize[0]);

...

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 188

2.8.6 PCO_ClearRamSegment

Description This function does clear the active memory segment. All image data is cleared and the segment

is prepared for new images.

Supported

camera type(s)

pco.dimax, pco.1200, pco.1600, pco.2000, pco.4000

Descriptor

dependency

dwGeneralCapsDESC1: NO_RECORDER

Prototype
SC2_SDK_FUNC int WINAPI PCO_ClearRamSegment (

HANDLE ph //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 189

2.8.7 PCO_GetActiveRamSegment

Description This function returns the active memory segment of the camera.

Supported

camera type(s)

pco.dimax, pco.1200, pco.1600, pco.2000, pco.4000

Descriptor

dependency

dwGeneralCapsDESC1: NO_RECORDER

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetActiveRamSegment (

HANDLE ph, //in

WORD* wActSeg //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wActSeg WORD* Pointer to a WORD variable to get the currently active segment.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 190

2.8.8 PCO_SetActiveRamSegment

Description This function does set the active memory segment. Images from a subsequent recording are

stored in the memory of the active segment. Relevant settings of the recorded images are also

stored for each segment see also PCO_GetSegmentImageSettings.

This command will be rejected, if Recording State is [run], see PCO_GetRecordingState.

Supported

camera type(s)

pco.dimax, pco.1200, pco.1600, pco.2000, pco.4000

Descriptor

dependency

dwGeneralCapsDESC1: NO_RECORDER

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetActiveRamSegment (

HANDLE ph, //in

WORD wActSeg //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wActSeg WORD WORD variable to set the active segment. Valid numbers are 1 / 2 / 3 /

4.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 191

2.8.9 PCO_GetCompressionMode

Description Gets the RAMcompressionmode of the camera. Please check camera descriptor 3 for availability.

Supported

camera type(s)

pco.dimax

Descriptor

dependency

dwGeneralCapsDESC1: NO_RECORDER

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetCompressionMode (

HANDLE ph, //in

WORD* wCompressionMode, //out

DWORD* pdwReserved, //out

WORD wReservedLen //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wCompressionMode WORD* Pointer to a WORD variable to receive the compressionmode.

pdwReserved DWORD* DWORD pointer for future use (set to NULL).

wReservedLen WORD WORD variable for future use (set to NULL).

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 192

2.8.10 PCO_SetCompressionMode

Description Sets the RAMcompressionmode of the camera. Please check camera descriptor 3 for availability.

Supported

camera type(s)

pco.dimax

Descriptor

dependency

dwGeneralCapsDESC1: NO_RECORDER

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetCompressionMode (

HANDLE ph, //in

WORD wCompressionMode, //in

DWORD* pdwReserved, //in

WORD wReservedLen //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wCompressionMode WORD WORD variable to set the compression mode.

pdwReserved DWORD* DWORD pointer for future use (set to NULL).

wReservedLen WORD WORD variable for future use (set to NULL).

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 193

2.8.11 PCO_GetMaxNumberOfImagesInSegment

Description Gets the maximum number of images in active segment.

Supported

camera type(s)

pco.dimax

Descriptor

dependency

dwGeneralCapsDESC1: NO_RECORDER

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetMaxNumberOfImagesInSegment (

HANDLE ph, //in

DWORD* dwMaxNumberImages //out

)

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

dwMaxNumberImages DWORD* DWORD pointer to get the maximum number of images in

current segment.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 194

2.9 Image Information

This function group can be used to get information about the layout of the images stored in the

segments of the camera, bit alignment during image transfer and used image correction mode.

2.9.1 PCO_GetImageStruct

Description Information about previously recorded images is queried from the camera and the variables of the

PCO_Image Structure are filled with this information. This function is a combined version of the

functions, which request information about the current recorded images. For a detailed description

of each parameter see the functions in this chapter. For the sake of clarity and because the PCO_-

Image Structure has a lot of reserved parameters it is better to use the functions which query

distinct parameter.

Supported

camera type(s)

pco.edge bi, pco.dimax, pco.1200, pco1600, pco.2000, pco.4000, pco.dicam

Descriptor

dependency

dwGeneralCapsDESC1: NO_RECORDER

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetImageStruct (

HANDLE ph, //in

PCO_Image* strImage //in,out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

strImage PCO_Image* Pointer to a PCO_Image Structure to get the image settings.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 195

2.9.1.1 PCO_Image Structure

Name Type Description

wSize WORD Size of this structure

ZZwAlignDummy1 WORD Reserved

strSegment[4] PCO_Segment Segment information structures

ZZstrDummySeg[14] PCO_Segment Reserved

strColorSet PCO_Image_ColorSet Reserved

wBitAlignment WORD Bit alignment

wHotPixelCorrectionMode WORD Hot pixel correction mode

2.9.2 PCO_GetSegmentStruct

Description Information about previously recorded images is queried from the camera and the variables of the

PCO_Segment Structure are filled with this information. These returned parameters depend on

the camera settings, which have been active during the last recording to the dedicated segment.

The PCO_Segment Structure includes also information about count of images in the segment

and the last SoftROI settings, which are pure virtual and depend only on settings in the API.

Supported

camera type(s)

pco.edge bi, pco.dimax, pco.1200, pco1600, pco.2000, pco.4000, pco.dicam

Descriptor

dependency

dwGeneralCapsDESC1: NO_RECORDER

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetSegmentStruct (

HANDLE ph, //in

WORD wSegment, //in

PCO_Segment* strSegment //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wSegment WORD WORD variable to address the desired segment (1/2/3/4).

strSegment PCO_Segment* Pointer to a PCO_Segment Structure to get the segment

image settings of the addressed segment.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 196

2.9.2.1 PCO_Segment Structure

Name Type Description

wSize WORD Size of this structure

wXRes WORD Resulting horizontal resolution. Depend on image area

selected, while recording in this segment.

wYRes WORD Resulting vertical resolution. Depend on image area selected,

while recording in this segment.

wBinHorz WORD Horizontal binning.

wBinVert WORD Vertical binning.

wRoiX0 WORD ROI upper left horizontal.

wRoiY0 WORD ROI upper left vertical.

wRoiX1 WORD ROI lower right horizontal.

wRoiY1 WORD ROI lower right vertical.

ZZwAlignDummy1 WORD Reserved.

dwValidImageCnt DWORD Number of valid images in segment.

dwMaxImageCnt DWORD Maximum number of images in segment.

wRoiSoftX0 WORD Soft ROI upper left horizontal.

wRoiSoftY0 WORD Soft ROI upper left vertical.

wRoiSoftX1 WORD Soft ROI lower right horizontal.

wRoiSoftY1 WORD Soft ROI lower right vertical.

wRoiSoftXRes WORD Soft ROI resulting horizontal resolution.

wRoiSoftYRes WORD Soft ROI resulting vertical resolution.

wRoiSoftDouble WORD Soft ROI with double image option enabled.

ZZwDummy[33] WORD Reserved.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 197

2.9.3 PCO_GetSegmentImageSettings

Description Information about previously recorded images is queried from the camera. The returned parameters

depend on the camera settings which have been active during the last recording to the dedicated

segment.

Supported

camera type(s)

pco.dimax, pco.1200, pco1600, pco.2000, pco.4000

Descriptor

dependency

dwGeneralCapsDESC1: NO_RECORDER

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetSegmentImageSettings (

HANDLE ph, //in

WORD wSegment, //in

WORD* wXRes, //out

WORD* wYRes, //out

WORD* wBinHorz, //out

WORD* wBinVert, //out

WORD* wRoiX0, //out

WORD* wRoiY0, //out

WORD* wRoiX1, //out

WORD* wRoiY1 //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wSegment WORD WORD variable to address the desired segment (1/2/3/4).

wXRes WORD* Pointer to a WORD variable to get the horizontal resolution of the

recorded images.

wYRes WORD* Pointer to a WORD variable to get the vertical resolution of the recorded

images.

wBinHorz WORD* Pointer to a WORD variable to get the horizontal binning of the recorded

images.

wBinVert WORD* Pointer to a WORD variable to get the vertical binning of the recorded

images.

wRoiX0 WORD* Pointer to a WORD variable to get the upper left horizontal ROI of the

recorded images.

wRoiY0 WORD* Pointer to a WORD variable to get the upper left vertical ROI of the

recorded images.

wRoiX1 WORD* Pointer to a WORD variable to get the lower right horizontal ROI of the

recorded images.

wRoiY1 WORD* Pointer to a WORD variable to get the lower right vertical ROI of the

recorded images.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 198

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

2.9.4 PCO_GetNumberOfImagesInSegment

Description This function returns the number of valid images and the maximum number of images within a

distinct segment.

While recording the number of valid images is dynamic - due to read and write accesses to the

CamRAM. If the recording is stopped, the variable ValidImageCnt does not change anymore.

If the camera is in storage mode [recorder] the variable ValidImageCnt is counting up until the

maximum image count is reached. After that the variable remains at the same value. If the camera

is in storage mode [FIFO buffer] the variable ValidImageCnt can decrease also, if the amount

of transferred images is greater than the recorded images. If ValidImageCnt does stay at 1,

transfer rate is equal or greater than recording rate. If ValidImageCnt is equal to maximum

image count, the transfer rate is too slow and therefore recorded images are lost. In storage mode

[FIFO buffer] the ratio of valid number of images to the maximum number of images is a kind of

filling level indicator.

Supported

camera type(s)

pco.dimax, pco.1200, pco.1600, pco.2000, pco.4000

Descriptor

dependency

dwGeneralCapsDESC1: NO_RECORDER

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetNumberOfImagesInSegment (

HANDLE ph, //in

WORD wSegment, //in

DWORD* dwValidImageCnt, //out

DWORD* dwMaxImageCnt //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wSegment WORD WORD variable to address the desired segment (1 / 2 / 3 / 4).

dwValidImageCnt DWORD* Pointer to a DWORD variable to get the valid number of images

in the addressed segment.

dwMaxImageCnt DWORD* Pointer to a DWORD variable to get the maximum possible

number of images in the addressed segment.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 199

2.9.5 PCO_GetBitAlignment

Description This function returns the current bit alignment of the transferred image data. If the dynamic

resolution of the camera is less than 16 bit/pixel and because the transferred image data is always

send as one WORD (16 bit) per pixel, the data can be either MSB or LSB aligned.

Alignment set to 0 – Upper example LSB aligned, lower example MSB aligned:

MSB LSB

0 0

00

MSB

MSB

MSB

LSB

LSB

LSB Image data (e.g. 14 bit, 2 bits unused)

Image data (e.g. 14 bit, 2 bits unused)

Transferred data (16 bit)

Transferred data (16 bit)

Figure 2.2: get bit alignment.

MSB

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetBitAlignment (

HANDLE ph, //in

WORD* wBitAlignment //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

wBitAlignment WORD* Pointer to a WORD variable to get to the bit alignment:

• 0x0000 = [MSB]

• 0x0001 = [LSB]

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 200

2.9.6 PCO_SetBitAlignment

Description This function does set the current bit alignment of the transferred image data. SeePCO_GetBitAlignment

for further details.

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetBitAlignment (

HANDLE ph, //in

WORD wBitAlignment //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera.

wBitAlignment WORD WORD variable which holds the bit alignment.

• 0x0000 = [MSB]

• 0x0001 = [LSB]

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 201

2.9.7 PCO_GetHotPixelCorrectionMode

Description This function returns the current mode of the hot pixel correction.

Hot pixel correction is used to eliminate hot, stuck or dead pixels from the raw image data, before

the image data is transferred. The coordinates of all these pixels are stored in the hot pixel list of

the camera.

Supported

camera type(s)

All cameras

Descriptor

dependency

dwGeneralCapsDESC1: HOT_PIXEL_CORRECTION

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetHotPixelCorrectionMode (

HANDLE ph, //in

WORD* wHotPixelCorrectionMode //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera.

wHotPixelCorrectionMode WORD* Pointer to aWORD variable to receive the hot pixel

correction mode.

• 0x0000 = [off]

• 0x0001 = [on]

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 202

2.9.8 PCO_SetHotPixelCorrectionMode

Description Sets the hot pixel correction mode of the camera.

Supported

camera type(s)

All cameras

Descriptor

dependency

dwGeneralCapsDESC1: HOT_PIXEL_CORRECTION

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetHotPixelCorrectionMode (

HANDLE ph, //in

WORD wHotPixelCorrectionMode //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera.

wHotPixelCorrectionMode WORD WORD variable to hold the hot pixel correction

mode.

• 0x0000 = [off]

• 0x0001 = [on]

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 203

2.10 Buffer Management

This function group can be used to allocate buffers for image transfers from the camera and to

request the status of the transfer.

The functions of this group cannot be used, if the connection to the camera is established through

the serial connection of aCamera Link grabber. In this case the SDK of the grabber manufactorer

must be used to do any buffer management.

2.10.1 PCO_AllocateBuffer

Description This function does set up a buffer context to receive the transferred images. A buffer index is

returned, which must be used for the image transfer functions. There is a maximum of 16 buffers

per camera. The buffers are attached to the camera handle. Therefore allocated buffers for one

camera cannot be used for a different camera. Memory can be allocated either internal or already

allocated memory can be attached to the buffer context. Because some of the image transfer

functions use events to inform the application about finished transfer, an event handle is included

in the buffer context. The event can be either a user allocated event or it is generated internal.

Using two buffers in an alternating manner is sufficient for most applications. If more than one

camera is used, the same buffer index can be returned for each camera.

To create a new buffer *sBufNr must be set to -1 on input. If the function returns without error,

*sBufNr contains the buffer index for this buffer context. If the memory allocation should be done

internally, *wBufmust be set to NULL and dwSize should be the current image size in bytes (Xres

* Yres * sizeof(WORD)). If the function returns without error, *wBuf contains the pointer to the

allocated memory. Larger buffers may be allocated, but the image transfer functions will always

write to the returned start address of the memory and some memory will be unused. If external

allocated memory should be attached, *wBuf must be set to a valid address and dwSize must

be the size of the allocated memory block in bytes. If Meta Data (PCO_SetMetaDataMode) is

enabled, further line(s) must be added to the allocated memory area, where the number of lines

depends on horizontal resolution and the size of the additional Meta Data block. Allocated or

attached memory is initialized to zero by this function.

Windows only: To create the event handle internal, *hEventmust be set to NULL. If the function

returns without error, *hEvent contains the handle to the internal created manual reset event.

If an external created event should be used, *hEvent must be set to the handle of the already

created event.

After changing the image size a reallocation should be done, with all valid buffer indices. In case

of internal allocated memory: memory with the new size will be allocated. Pay attention that the

start address might change. An external allocated buffer will be tested with the new size

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_AllocateBuffer (

HANDLE ph, //in

SHORT* sBufNr, //in,out

DWORD size, //in

WORD** wBuf, //in,out

HANDLE* hEvent //in,out

);

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 204

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera.

sBufNr SHORT* Pointer to a SHORT variable to hold and receive the buffer number. If a

new buffer has to be assigned, set sBufNr to -1. If an existing buffer

should be changed, set sBufNr to the desired nr.

size DWORD Size of the buffer to be created, or to be changed to.

wBuf WORD** Pointer to a pointer to a WORD to receive the image data pointer.

hEvent HANDLE* Pointer to an event handle to receive or to hold an event. If hEvent set

to NULL, a new event will be created and will be returned through this

pointer. You can create an event handle externally, if you wish, and you

can set this externally created event handle to become this buffer event

handle. Windows only.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

Example
HANDLE hHandleCam;

SHORT sBufNr;

WORD *wBuf; wBuf[0...size] represents the ←↩
image data

HANDLE hEvent;

DWORD size, newsize;

...

WORD wXResAct; Actual X Resolution

WORD wYResAct; Actual Y Resolution

WORD wXResMax; Maximum X Resolution

WORD wYResMax; Maximum Y Resolution

int err = PCO_GetSizes(hCamera, &wXResAct, &wYResAct, &wXResMax, &←↩
wYResMax);

size = wXResMax * wYResMax * sizeof(WORD);

sBufNr = -1;

hEvent = NULL; hEvent must be set to either ←↩
NULL

or if you like to create your own event: hEvent = CreateEvent(0, TRUE←↩
, FALSE, NULL);

wBuf will receive the pointer to the image data.

err = PCO_AllocateBuffer(hHandleCam, &sBufNr, size, &wBuf, &hEvent);

Get some image here...

WORD wPixelValuePixel100 = wBuf[100]; Direct access to image data.

...

newsize = wXResAct * wYResAct * sizeof(WORD); reallocate buffer to a ←↩
new size.

err = PCO_AllocateBuffer(hHandleCam, &sBufNr, newsize, &wBuf, NULL);

...

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 205

2.10.2 PCO_FreeBuffer

Description This function does free a previously allocated buffer context with the given index. If internal

memory was allocated for this buffer context it will be freed. If an internal event handle was created,

it will be closed.

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_FreeBuffer (

HANDLE ph, //in

SHORT sBufNr //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera.

sBufNr SHORT SHORT variable to hold the buffer number.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 206

2.10.3 PCO_GetBufferStatus

Description This function does query the status of the buffer context with the given index. Two status DWORDs

are returned from this function, one (StatusDll) which describes the state of the buffer context,

the other (StatusDrv) the state of the last image transfer into this buffer as PCO errorcode. The

StatusDrv must always be checked to see if an image transfer was successful or not. Wait

functions return and the event is signaled also when the buffer was cancelled or when the camera

cannot fulfill the requested transfer.

Supported

camera type(s)

All cameras.

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetBufferStatus (

HANDLE ph, //in

SHORT sBufNr, //in

DWORD* dwStatusDll, //out

DWORD* dwStatusDrv //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera.

sBufNr SHORT SHORT variable to hold the number of the buffer to query.

dwStatusDll DWORD* Pointer to a DWORD variable to receive the status in the sc2_-

cam.dll. The status is separated into two groups of flags.

0xFFFF0000 reflectthe static flags and 0x0000FFFF the dynamic

flags. The dynamic flags will be reset by Allocate- and AddBuffer.

• 0x80000000: Buffer is allocated

• 0x40000000: Buffer event created inside the SDK DLL

• 0x80000000: Buffer is allocated externally

• 0x80000000: Buffer event is set

dwStatusDrv DWORD* Pointer to a DWORD variable to receive the status in the driver

• PCO_NOERROR = Image transfer succeeded

• others = See error codes

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 207

2.10.4 PCO_GetBuffer

Description This function is used to query the objects of the buffer context with the given index. The pointer

to the allocated or attached memory region and the assigned event handle are returned.

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetBuffer (

HANDLE ph, //in

SHORT sBufNr, //in

WORD** wBuf, //out

HANDLE* hEvent //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera.

sBufNr SHORT SHORT variable to hold the buffer number.

wBuf WORD** Pointer to a pointer to a WORD to receive the image data pointer.

hEvent HANDLE* Pointer to an event handle to receive or to hold an event.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 208

2.11 Image Acquisition

This function group can be used to handle image transfers from the camera. Image transfers

can be done with two different methods. Both methods can be used to transfer images from a

recording camera or if available from the camera internal memory (CamRAM)

Transfer a single image: Function PCO_GetImageEx shall be used to transfer single images.

With this function an image transfer from the camera is started and the function does not return

until either the image transfer has been done successfully or the image transfer has got an error

status or the transfer timed out. The timeout value for the transfer can be set with function PCO_-

SetTimeouts (second DWORD). The function returns the errorcode of the transfer or the timeout

errorcode.

Transfer a continuous image stream: Functions PCO_AddBufferEx or PCO_AddBufferExtern

shall be used to add transfer requests to an internal queue. An image transfer request to a distinct

buffer context is added to an internal transfer request queue and the function returns immediately.

One of the following waiting methods must then be used to check the transfer state and test if the

image has been transferred completely:

Windows only:

• Call Windows API function WaitForSingleObject or WaitForMultipleObjects

• Call Function PCO_WaitforBuffer

• Polling with PCO_GetBufferStatus (should be avoided)

Linux only:

• Call Function PCO_WaitforNextBufferNum

• Call Function PCO_WaitforNextBufferAdr

• Add buffers with PCO_AddBufferExtern_CB and enter callback

• Polling with PCO_GetBufferStatus (should be avoided)

After end of transfer is signaled PCO_GetBufferStatus has to be called and the StatusDrv must

be checked to see if the transfer was successful or not.

The functions of this group cannot be used, if the connection to the camera is established through

the serial connection of aCamera Link grabber. In this case the SDK of the grabber manufacturer

must be used to grab images from the camera.

2.11.1 PCO_GetImageEx

Description This function can be used to get a single image from the camera. The function does not return

until the image is transferred to the buffer or an error occured. The timeout value for the transfer

can be set with function PCO_SetTimeouts (second DWORD), the default value is 6 seconds. On

return the image is stored in the memory area of the buffer, which is addressed through parameter

sBufNr.

To get images from the camera internal memory (CamRAM) the camera must be stopped. Any

segment can be selected with parameter wSegment and the parameter dw1stImage selects the

image number, which should be transferred. This parameter must be in the range from 1 to

ValidImageCnt, which is returned from PCO_GetNumberOfImagesInSegment. Because the

feature to transfer more than one image from internal memory per call is not implemented in PCO

cameras with internal memory, this function is also limited to transfer single images. Therefore the

parameter dwLastImage is useless at the moment, but nevertheless must be set to the same value

as dw1stImage.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 209

To get images from a recording camera both image number values dw1stImage and dwLastImage

must be set to zero. The size parameters are used to calculate the amount of data, which is

transferred from the camera. The size must match the current size of the image, which should be

transferred.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 210

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetImageEx (

HANDLE ph, //in

WORD wSegment, //in

DWORD dw1stImage, //in

DWORD dwLastImage, //in

SHORT sBufNr, //in

WORD wXRes, //in

WORD wYRes, //in

WORD wBitPerPixel //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera.

wSegment WORD WORD variable to select a segment.

dw1stImage DWORD DWORD variable to select the image number:

• 1 to ValidImageCnt, if PCO_SetRecordingState is [stop]

• 0 if PCO_SetRecordingState is [run]

dwLastImage DWORD Must be set to same value as dw1stImage

sBufNr SHORT Buffer index

wXRes WORD Current horizontal resolution of the image which should be

transferred

wYRes WORD Current vertical resolution of the image which should be

transferred

wBitPerPixel WORD Bit resolution of the image which should be transferred

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 211

2.11.2 PCO_GetImage (obsolete)

Description This function can be used to get a single image from the camera. Windows only. Obsolete,

please use PCO_GetImageEx.

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetImage (

HANDLE ph, //in

WORD wSegment, //in

DWORD dw1stImage, //in

DWORD dwLastImage, //in

SHORT sBufNr //in

);

Parameter Name Type Description

ph HANDLE Handle to a proviously opened camera.

wSegment WORD WORD variable to select the segment.

dw1stImage DWORD DWORD variable to select the image number:

• 1 to ValidImageCnt, if PCO_SetRecordingState is [stop]

• 0 if PCO_SetRecordingState is [run]

dwLastImage DWORD Must be set to same value as dw1stImage

sBufNr SHORT Buffer index

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 212

2.11.3 PCO_AddBufferEx

Description This function can be used to setup a request for a single image transfer from the camera. The

transfer request is added to the internal request queue and this function returns immediately. If

the desired image has been transferred, the buffer event will be signaled and the appropriate bit is

set in the StatusDll variable of the buffer context. The StatusDrv variable of the buffer context

will hold the transfer status, which is either PCO_NOERROR if the transfer was successful or any

error value. More than one buffer can be added into the request queue. A buffer must not be set

twice into the request queue at the same time. But when the transfer to a buffer is completed, it

can be set again into the request queue. Any operation, which should be done on the image, must

be finished before the buffer is added again. After all image transfers are done or in case of errors

PCO_CancelImagesmust be called to clear the internal queue and also to reset the transfer state

machine in the camera.

To readout images from camera internal memory (CamRAM) the camera must be stopped. The

current selected segment is used and the parameter dw1stImage selects the image number,

which should be transferred. This value must be in the range from 1 to ValidImageCnt, which

is returned from PCO_GetNumberOfImagesInSegment. The parameter dwLastImage must

always be set to the same value as dw1stImage.

To get images from a recording camera both image number values dw1stImage and dwLastImage

must be set to zero. In this case PCO_AddBufferEx should be called after setting the Recording

State to [on] (see PCO_GetRecordingState) to avoid error returns from the camera.

Only exception to this rule is when operating a pco.edge with Camera Link interface. Because

with the first PCO_AddBufferEx call the internal request queue is setup and this might be a time

consuming operation, first images of the camera might get lost. Therefore PCO_AddBufferEx

should be called before setting the PCO_SetRecordingState to [on]. When a separate thread

is used for image grabbing, synchronization between camera control thread and image transfer

thread must be designed carefully.

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_AddBufferEx (

HANDLE ph, //in

DWORD dw1stImage, //in

DWORD dwLastImage, //in

SHORT sBufNr, //in

WORD wXRes, //in

WORD wYRes, //in

WORD wBitPerPixel //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera.

Continued on next page

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 213

Continued from previous page

Name Type Description

dw1stImage DWORD DWORD variable to select the image number:

• 1 to ValidImageCnt if recording state is [stop]

• 0 if recording state is [run]

dwLastImage DWORD Must be set to same value as dw1stImage

sBufNr SHORT Buffer index

wXRes WORD Current horizontal resolution of the image which should be

transferred .

wYRes WORD Current vertical resolution of the image which should be

transferred.

wBitPerPixel WORD Bit resolution of the image which should be transferred.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 214

2.11.4 PCO_AddBuffer (obsolete)

Description Obsolete, please use PCO_AddBufferEx. Windows only.

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_AddBuffer (

HANDLE ph, //in

DWORD dw1stImage, //in

DWORD dwLastImage, //in

SHORT sBufNr //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device.

dw1stImage DWORD DWORD variable to select the image number:

• 1 to ValidImageCnt if recording state is [stop]

• 0 if recording state is [run]

dwLastImage DWORD Must be set to same value as dw1stImage.

sBufNr SHORT Buffer index

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 215

2.11.5 PCO_AddBufferExtern

Description WRONG USE OF THIS FUNCTION MAY CRASH YOUR SYSTEM. PCO IS NOT RESPONSIBLE

FOR DAMAGES DUE TO IMPROPER USE OF THIS FUNCTION.

This function can be used to setup a request for a single image transfer from the camera. The

transfer request is added to the internal request queue and this function returns immediately. If

the desired image has been transferred, the event will be signaled and the value of the dwStatus

variable will hold the transfer status, which is eitherPCO_NOERROR, if the transfer was successful,

or any error value. If the transfer was successful, the memory area, which was passed in, is filled

with the image data from the camera.

A context which does hold the pointer to the memory area, the event handle and the pointer to

the status DWORD should be used to differentiate between the added requests. This context must

be valid as long as its members are set in the internal request queue, because the members are

directly accessed from the underlying functions. More than one memory area with an associated

event can be added into the request queue. A memory area with an associated event must not

be set twice into the request queue at the same time. When the transfer is completed, it can be

set again into the request queue. Any operation, which should be done on the image, must be

finished before the buffer is added again. After all image transfers are done or in case of errors

PCO_CancelImages must be called, to clear the internal queue and also to reset the transfer

state machine in the camera. To readout images from from camera internal memory (CamRAM)

the camera must be stopped. Any segment can be selected with parameter wSegment and the

parameter dw1stImage selects the image number, which should be transferred. This value must

be in the range from 1 to ValidImageCnt, which is returned fromPCO_GetNumberOfImagesInSegment.

The parameter dwLastImage must always be set to the same value as dw1stImage.

To get images from a recording camera both image number values dw1stImage and dwLastImage

must be set to zero. In this case PCO_AddBufferEx should be called after setting the recording

state PCO_SetRecordingState to [on] to avoid error returns from the camera.

Only exception to this rule is when operating a pco.edge with Camera Link interface. Because

with the firstAddBuffer call the internal request queue is setup and this might be a time consuming

operation, first images of the camera might get lost. Therefore PCO_AddBufferExtern should

be called before setting the recording state to [on]. When a separate thread is used for image

grab, synchronization between camera control thread and image transfer thread must be designed

carefully.

If Meta Data mode (see PCO_SetMetaDataMode) is enabled, further line(s) must be added to

the allocated memory area, where the number of lines to add depends on horizontal resolution

and the size of the additional Meta Data block. The benefit of using this function is that image

transfer is speed up. Due to missing parameter checking the call itself is faster and due to setting

own memory addresses, there is no need for a further copy from API buffers to another memory

area.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 216

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_AddBufferExtern (

HANDLE ph, //in

HANDLE hEvent, //in

WORD wActSeg, //in

DWORD dw1stImage, //in

DWORD dwLastImage, //in

DWORD dwSynch, //in

void* pBuf, //in,out

DWORD dwLen, //in

DWORD* dwStatus //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera.

hEvent HANDLE Handle to an event. The event is signaled, if the transfer is finished

successfully or an error occurred.

wActSeg WORD WORD variable to select the segment.

dw1stImage DWORD DWORD variable to select the image number:

• 1 to ValidImageCnt if recording state is [stop]

• 0 if PCO_SetRecordingState is [run]

dwLastImage DWORD Must be set to same value as dw1stImage.

dwSynch DWORD Reserved, set to 0

pBuf void* Pointer to the start address of memory area for the transferred

image.

dwLen DWORD Size of the memory area in bytes.

dwStatus DWORD* Pointer to a DWORD to receive the buffer status.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 217

2.11.6 PCO_AddBufferExtern_CB

Description Adds an external image buffer to the driver queue and return immediately. Callback function is

called, when image is in buffer. The images will be transferred to a previously allocated buffer

addressed by the sBufNr. This buffer has to be big enough to hold all the requested images. In

case of additional metadata, the user has to take care for the correct buffer size. The function uses

an internal Callback function. Linux only

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_AddBufferExtern_CB (

HANDLE ph, //in

WORD wSegment, //in

DWORD dwFirstImage, //in

DWORD dwLastImage, //in

DWORD dwSynch, //in

void* pBuf, //in,out

DWORD dwLen, //in

pco_image_done_cb_fn userfunc, //in

void* userdata //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera

wSegment WORD Variable to select the segment in camera.

dwFirstImage DWORD Variable to select the image number:

• 1 to ValidImageCnt, if recording state is

[stop]

• 0 if PCO_SetRecordingState is [run]

dwLastImage DWORD Must be set to same value as dw1stImage.

dwSynch DWORD Variable to hold synchronization parameter.

pBuf void* Pointer to image buffer.

dwLen DWORD Size of buffer pBuf in bytes.

userfunc pco_image_done_cb_fn Callback function

userdata void* Userdata, which is forwarded to callback

function.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 218

2.11.7 PCO_CancelImages

Description This function does remove all remaining buffers from the internal queue, reset the internal queue

and also reset the transfer state machine in the camera. Buffers which are removed from the

internal queuewill set their event handle to signaled and the StatusDrv is set to PCO_ERROR_DRIVER_BUFFER_CANCELLED

.

It is mandatory to call PCO_CancelImages after all image transfers are done. This function can

be called before or after setting PCO_SetRecordingState to [stop]. In case calling this function

is very time consuming, please change the order of cancel and setting the Recording State.

In general, it is necessary to synchronize this function with any of the AddBuffer functions (PCO_-

AddBufferEx; PCO_AddBufferExtern), to eliminatemisbehaviour, whichmight occur, when buffers

are added during execution of PCO_CancelImages.

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_CancelImages (

HANDLE ph //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 219

2.11.8 PCO_RemoveBuffer (obsolete)

Description Obsolete, please use PCO_CancelImages instead. Windows only

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_RemoveBuffer (

HANDLE ph //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 220

2.11.9 PCO_GetPendingBuffer

Description This function can be used to query the number of pending buffers in the internal queue. Even if the

number of pending buffers is zero it is recommended to call PCO_CancelImages after all image

transfers are done, to ensure that the transfer state machine in the camera is set to an idle state.

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetPendingBuffer (

HANDLE ph, //in

int* count //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera.

count int* Pointer to an int variable to get the number of pending buffers in the internal

queue.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 221

2.11.10 PCO_WaitforBuffer

Description This function can be used to wait for one or more buffers, which have been set into the internal

request queue of the driver. To handle the buffers, a list of PCO_Buflist structures (PCO_Buflist

Structure) must be set up, each filled with the buffer number of the allocated buffer. On return the

two status DWORDs reflect the current status of the buffer, dwStatusDll describes the state of

the buffer context, dwStatusDrv the state of the last image transfer into this buffer as error code.

This function uses an effective wait function (e.g. WaitforMultipleObjects) to wait for the

events of the buffers, which are set up in the internal request queue and for which a list entry exists.

Windows only

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_WaitforBuffer (

HANDLE ph, //in

int nr_of_buffer, //in

PCO_Buflist* bl, //in,out

int timeout //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera.

nr_of_buffer int Number of buffers in PCO_Buflist.

bl PCO_Buflist* Pointer to a buffer list, which holds the buffers to process.

timeout int Timeout in milliseconds.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 222

2.11.10.1 PCO_Buflist Structure

Name Type Description

SBufNr SHORT Size of this struct.

reserved WORD Reserved

dwStatusDll DWORD Status inside the SDK DLL:

• 0x80000000 = buffer is allocated

• 0x40000000 = buffer event created inside the SDK DLL

• 0x20000000 = buffer is allocated externally

• 0x00008000 = buffer event is set

dwStatusDrv DWORD Status fot the image transfer:

• PCO_NOERROR = image transfer succeeded

• others = see Error codes

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 223

2.11.11 PCO_WaitforNextBufferNum

Description Wait for next buffer from driver queue. Buffer has been added with PCO_AddBufferEx(). The

images will be transferred to a previously allocated buffer addressed by the sBufNr. Linux only

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_WaitforNextBufferNum (

HANDLE ph, //in

SHORT* sBufNr, //out

int timeout //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera.

sBufNr SHORT* Pointer to SHORT variable to receive the buffer number of this buffer.

timeout int Timeout in milliseconds

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 224

2.11.12 PCO_WaitforNextBufferAdr

Description Wait for next buffer from driver queue. Buffer has been added with PCO_AddBufferExtern(). The

images will be transferred to a previously allocated buffer addressed by the sBufNr. Linux only

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_WaitforNextBufferAdr (

HANDLE ph, //in

void** BufferAddress, //out

int timeout //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera.

BufferAddress void** Pointer to void pointer to receive the buffer address of this

buffer.

timeout int Timeout in milliseconds

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 225

2.11.13 PCO_EnableSoftROI

Description ATTENTION: This is an initialization function. Please call after opening the camera and do not

change this parameter during runtime. Enables Soft-ROI functionality for Soft-ROI capable interfaces.

In case it is necessary to get a smaller ROI-granularity (e.g. in x-direction it is only possible to set

the ROI in steps of 160 pixels with a pco.edge 5.5) this function enables smaller granularity (e.g.

a pco.edge 5.5 is reduced to 4 pixels in x-direction). If Soft-ROI is enabled it is recommended to

use PCO_SetTransferParametersAuto(ph, NULL,0). This makes sure that the camera and interface

are set to the correct transfer modes when using Soft-ROI. PCO_GetTransferParameter, PCO_-

SetTransferParameter and PCO_SetActiveLookupTable are replaced by the PCO_SetTransferParametersAuto

function. If PCO_SetTransferParametersAuto is not used it is mandatory to take care for the correct

setup of the transfer parameters (e.g. Soft-ROI is smaller than x=1920, but the camera ROI is bigger

than x=1920 due to the granularity of the camera).

Supported

camera type(s)

Only for cameras connected to Camera Link mico Enable IV (mEIV) grabber.

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_EnableSoftROI (

HANDLE ph, //in

WORD wSoftROIFlags, //in

void* param, //in

int ilen //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera.

wSoftROIFlags WORD WORD parameter to set Soft ROI functionality:

• 0x0000 = disable Soft ROI

• 0x0001 = enable Soft ROI

param void* Reserved, set to NULL

ilen int Reserved, set to 0

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 226

2.11.14 PCO_GetAPIManagement

Description Call this function to get information about API management.

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetAPIManagement (

HANDLE ph, //in

WORD* wFlags, //out

PCO_APIManagement* pstrApi //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera

wFlags WORD* Pointer to WORD to get the soft ROI status

• 0x0000 = disable Soft ROI

• 0x0001 = enable Soft ROI

pstrApi PCO_APIManagement* Pointer to a PCOAPIManagement structure (see

sc2_sdkstructures.h)

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 227

2.11.15 PCO_GetMetaData

Description This function can be used to query the additional image information, which the camera has attached

to the transferred image, ifMeta Data mode is enabled. The function does only work with buffers

allocatedwithPCO_AllocateBuffer. The additional image information is returned asPCO_METADATA_-

STRUCT Structure, which is defined in the file sc2_common.h. Header file sc2_common.h has

to be included before sc2_camexport.h.

Supported

camera type(s)

pco.panda, pco.edge, pco.edge bi, pco.dimax, pco.dicam

Descriptor

dependency

dwGeneralCapsDESC1: METADATA

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetMetaData (

HANDLE ph, //in

SHORT sBufNr, //in

PCO_METADATA_STRUCT* pMetaData, //out

DWORD dwReserved1, //in

DWORD dwReserved2 //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera.

sBufNr SHORT SHORT variable to hold the number of the

buffer to query.

PCO_METADATA_STRUCT *pmeta -> Pointer

to a meta data structure.

DWORD dwReservedx -> Reserved for future

use, set to zero.

pMetaData PCO_METADATA_STRUCT* Pointer to a meta data structure.

dwReserved1 DWORD Reserved for future use, set to zero.

dwReserved2 DWORD Reserved for future use, set to zero.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 228

2.11.15.1 PCO_METADATA_STRUCT Structure

Name Type Description

wSize WORD Size of this structure

wVersion WORD Version of this structure

bIMAGE_COUNTER_BCD BYTE[4] 0x00000001 to 0x99999999 where first

byte is least significant byte

bIMAGE_TIME_US_BCD BYTE[3] 0x000000 to 0x999999 where first byte is

least significant byte

bIMAGE_TIME_SEC_BCD BYTE 0x00 to 0x59

bIMAGE_TIME_MIN_BCD BYTE 0x00 to 0x59

bIMAGE_TIME_HOUR_BCD BYTE 0x00 to 0x23

bIMAGE_TIME_DAY_BCD BYTE 0x01 to 0x31

bIMAGE_TIME_MON_BCD BYTE 0x01 to 0x12

bIMAGE_TIME_YEAR_BCD BYTE 0x00 to 0x99 only last two digits, 2000 has

to be added

bIMAGE_TIME_STATUS BYTE

• 0x00 = internal osc

• 0x01 = synced by IRIG

• 0x02 = synced by master

wEXPOSURE_TIME_BASE WORD Time base ns / µs / ms for following exposure

time

dwEXPOSURE_TIME DWORD Exposure time in ns / us / ms according to

timebase

dwFRAMERATE_MILLIHZ DWORD Frame rate in mHz, 0 if unknown

sSENSOR_TEMPERATURE SHORT current sensor temperature in °C. 0x8000 if

unknown

wIMAGE_SIZE_X WORD Current size of image in x direction

(horizontal)

wIMAGE_SIZE_Y WORD Current size of image in y direction (vertical)

bBINNING_X BYTE Binning in x direction, 0x00 if unknown

bBINNING_Y BYTE Binning in y direction, 0x00 if unknown

dwSENSOR_READOUT_FREQUENCY DWORD Sensor readout frequency in Hz, 0 if

unknown

wSENSOR_CONV_FACTOR WORD Sensor conversions factor in e-/ct, 0 if

unknown

dwCAMERA_SERIAL_NO DWORD Camera serial number, 0 if unknown

wCAMERA_TYPE WORD Camera type, 0 if unknown

bBIT_RESOLUTION BYTE Dynamic resolution in bits/pixel

Continued on next page

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 229

Continued from previous page

Name Type Description

bSYNC_STATUS BYTE Status of PLL for external synchronization

100Hz or 1kHz:

• 0x00 = off

• 0x01 = locked

wDARK_OFFSET WORD Nominal dark offset in counts, 0xFFFF if

unknown current dark offset may differ

bTRIGGER_MODE BYTE Trigger mode

bDOUBLE_IMAGE_MODE BYTE

• 0x00 = standard

• 0x01 = double image (PIV) mode

bCAMERA_SYNC_MODE BYTE

• 0x00 = standalone

• 0x01 = master

• 0x02 = slave

bIMAGE_TYPE BYTE

• 0x01 = b/w

• 0x02 = color bayer pattern

• 0x10 = RGB

wCOLOR_PATTERN WORD Bayer pattern color mask, seeColor Pattern

Description (2x2 matrix)

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 230

2.11.16 PCO_GetMetaDataExtern

Description Gets the image buffer attached meta data, if available. Note: Please include sc2_common.h

before including sc2_camexport.h in order to enable this function.

Supported

camera type(s)

pco.panda, pco.edge, pco.edge bi, pco.dimax, pco.dicam

Descriptor

dependency

dwGeneralCapsDESC1: METADATA

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetMetaDataExtern (

HANDLE ph, //in

void* pBuf, //in

PCO_METADATA_STRUCT* pMetaData, //out

DWORD dwReserved1, //in

DWORD dwReserved2 //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera.

pBuf void* buffer to query

pMetaData PCO_METADATA_STRUCT* Pointer to a meta data structure.

dwReserved1 DWORD Reserved for future use, set to zero.

dwReserved2 DWORD Reserved for future use, set to zero.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 231

2.11.17 PCO_GetTimeStamp

Description Gets the image buffer time stamp, if available.

Supported

camera type(s)

All cameras.

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetTimeStamp (

HANDLE ph, //in

SHORT sBufNr, //in

WORD* wBuf, //in

PCO_TIMESTAMP_STRUCT* strTimeStamp //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera.

sBufNr SHORT Buffer number of allocated buffer. Either

supply this or wBuf.

wBuf WORD* Pointer to image buffer. Either supply wBuf

or a buffer number.

strTimeStamp PCO_TIMESTAMP_STRUCT* Pointer to a time stamp data structure.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 232

2.12 Driver Management

This function group can be used to get and set parameters for the different interface standards

represented through the according interface DLL. Different options are available for each interface

and therefore each interface DLL does use a different structure type for the parameter settings.

Function PCO_GetCameraType can be used to query the interface type of the connected camera.

The interface specific structure must be used to query or set the transfer parameters with the

functions PCO_SetTransferParameter and PCO_SetTransferParametersAuto.

2.12.1 PCO_GetTransferParameter

Description Current transfer parameter settings are queried from the driver layer of the connected interface

and the transfer parameter structure is filled with this information. Windows only

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetTransferParameter (

HANDLE ph, //in

void* buffer, //out

int ilen //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera.

buffer void* Pointer to an array to receive the transfer parameters.

ilen int Total length of the buffer in bytes.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 233

2.12.2 PCO_SetTransferParameter

Description Sets the transfer parameters for the transfer media.

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetTransferParameter (

HANDLE ph, //in

void* buffer, //in

int ilen //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera.

buffer void* Pointer to an array to set the transfer parameters.

ilen int Total length of the buffer in bytes.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 234

2.12.3 Transfer Parameter Structures

Description of the structures used from each interface DLL.

2.12.3.1 FireWire interface

Structure type is PCO_1394_TRANSFER_PARAM

Changing the transfer parameters for the FireWire interface is only necessary, if simultaneous

transfers from more than one camera are requested or if the FireWire bus must be shared with

other devices. Then bus bandwidth must be split up among the connected cameras and a unique

channel number must be selected for each camera. Decreasing the value for the usable bandwidth

on the bus will increase the time, which is needed for the image transfers.

Default behaviour of the FireWire driver is to allocate bandwidth on the bus only, when an image

is requested and free the bus again after the transfer is completed and the additional transfertime

timeout has run out. The channel number used for this transfer is selected from the FireWire OHCI

driver. With flag PCO_1394_HOLD_CHANNEL added to the number_of_isochannel parameter

this behaviour is changed. When callingPCO_SetTransferParameter, the requested bus bandwidth

is allocated at the requested channel number and hold as long as the flag is set.

Name Type Description

bandwidth_bytes DWORD Bandwidth size in bytes, which should be

allocated for the image transfer on the

isochronous channel of the FireWire bus.

Maximum value is 4096. Values below 1024

should not be used. Default value is 4096

speed_of_isotransfer DWORD 1, 2, 4, whereas:

• 1 = 100 MBit/s

• 2 = 200 MBit/s

• 4 = 400 MBit/s

Default value is 4

number_of_isochannel DWORD Isochronous channel number to use 0…7, can

be ored with flags PCO_1394_HOLD_CHANNEL

and PCO_1394_AUTO_CHANNEL. Default value is

PCO_1394_AUTO_CHANNEL

number_of_isobuffers DWORD Maximum number of buffers to use when

allocating transfer resources. Value depends on

image size and is auto adjusted from the driver.

Default is 128

byte_per_isoframe DWORD Information only: used bytes on the 1394 bus.

bytes_available DWORD Information only: remaining bytes on the 1394

bus.

reserved DWORD[15] Reserved

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 235

2.12.3.2 CameraLink interface

Structure type is PCO_SC2_CL_TRANSFER_PARAM.

Transfer parameters of the Camera Link interface can be used to change the baud rate for the serial

connection, which is used to send and receive the control commands and to change the settings

for the image transfers in the camera and also in the interface DLL. Additionaly the camera can be

setup to use the CClines of the Camera Link interface as external trigger signals.

Descriptor

dependency

dwGeneralCapsDESC1: DATAFORMAT2X12, DATAFORMAT4X16, DATAFORMAT5X16

Name Type Description

baudrate DWORD Baud rate of the Camera Link serial port interface. Valid values:

• 9600, 19200, 38400, 57600, 115200

ClockFrequency DWORD Clock rate of the Camera Link interface. Valid values:

• pco.1600, pco.2000: 40000000, 66000000, 80000000

• pco.4000: 32000000, 64000000

• pco.dimax: 80000000

• pco.edge: 85000000

(Note: different to sensor pixel clock!)

CCline DWORD Bit field to enable the usage of the CC1-CC4 lines:

• 0x00000001: CC1 line is used as external trigger input

• 0x00000002: CC2 line is used as external acquire input

• 0x00000004: Reserved

• 0x00000008: CC4 line is used as transmit enable

• all others reserved

DataFormat DWORD Data format of transferred images:

• 0x00000001: 1 x 16 bit per Camera Link clock

• 0x00000002: 2 x 12 bit per Camera Link clock

• For the pco.edge see special note below

Transmit DWORD Bitfield for transmit parameters:

• 0x00000001: Enable continuous image transfer

• 0x00000002: Use longer gaps between frame and line

signals

• All others reserved for special use, must be set to 0

Note: pco.edge

5.5

PCO_SetTransferParametersAuto can be usedwhich does set the necessary parameters automatically.

The DataFormat parameter is a combination of one of the PCOCLDATAFORMAT settings

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 236

and the SCCMOS readout format setting. With the SCCMOS readout format the data readout

direction of the camera can be controlled.

Available PCOCLDATAFORMAT formats are:

• 0x0005: PCO_CL_DATAFORMAT_5x16

• 0x0007: PCO_CL_DATAFORMAT_5x12

• 0x0008: PCO_CL_DATAFORMAT_10x8

• 0x0009: PCO_CL_DATAFORMAT_5x12L

• 0x000A: PCO_CL_DATAFORMAT_5x12R

Available values for SCCMOS Readout format are (see SCCMOS readout format):

• 0x0000: SCCMOS_FORMAT_TOP_BOTTOM

• 0x0100: SCCMOS_FORMAT_TOP_CENTER_BOTTOM_CENTER

• 0x0200: SCCMOS_FORMAT_CENTER_TOP_CENTER_BOTTOM

• 0x0300: SCCMOS_FORMAT_CENTER_TOP_BOTTOM_CENTER

• 0x0400: SCCMOS_FORMAT_TOP_CENTER_CENTER_BOTTOM

For each of the SCCMOS format settings the correct line sorting algorithm is choosen from the

interface DLL.

For Global Shutter setup the data format cannot be changed. The available data format is:

PCO_CL_DATAFORMAT_5x12 | SCCMOS_FORMAT_TOP_CENTER_BOTTOM_CENTER

For Rolling Shutter or Global Reset setup the data format PCO_CL_DATAFORMAT_10x8 can

be used for simplified data transfer. Different LUT’s are available in the camera to select the

appropriate range for the 16 bit to 8 bit conversion.

For Rolling Shutter or Global Reset setup the data format setting for 16 bit data transfers depend

on the camera type, the selected pixel clock and the horizontal resolution of the current camera

ROI. IfSoft ROI is enabled attention should be paid to use the current camera ROI for the calculation

and not the settings of the Soft ROI.

pco.edge 5.5 Rolling Shutter and GlobalReset mode:

Sensor Pixelrate, horizontal Resolution PCO_CL_Dataformat Lookup Table

95 MHz, all PCO_CL_DATAFORMAT_5x16 0

286 MHz, below or equal 1920 PCO_CL_DATAFORMAT_5x16 0

286 MHz, above 1920 PCO_CL_DATAFORMAT_5x12L 0x1612

PCO_CL_DATAFORMAT_5x12R 0x1612

pco.edge 4.2 Rolling Shutter and GlobalReset mode:

Sensor Pixelrate, horizontal Resolution PCO_CL_Dataformat Lookup Table

95 MHz, all PCO_CL_DATAFORMAT_5x16 0

272 MHz, all PCO_CL_DATAFORMAT_5x16 0

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 237

If data format is set to PCO_CL_DATAFORMAT_5x12L or PCO_CL_DATAFORMAT_5x12R the camera

lookup table must be set with PCO_SetActiveLookupTable to 0x1612, to enable square root

compression of the pixel data.

If data format PCO_CL_DATAFORMAT_5x12L is set the 12 bit compressed and packed pixel data

are recalculated to 16 bit pixel values with a recalculation function in the interface DLL.

If data format PCO_CL_DATAFORMAT_5x12R is set no recalculation is done and the compressed

and packed pixel data is transferred to the image buffer.

2.12.3.3 USB interface

Structure type is PCO_USB_TRANSFER_PARAM.

Transfer parameters of the USB interface should not be changed, but can be used to query the

current settings in the camera and the interface DLL.

Name Type Description

Reserved1 unsigned int Reserved

Clock Frequency unsigned int Clock rate of the camera internal interface

businformation only should not be changed.

Reserved2 unsigned int Reserved

Reserved3 unsigned int Reserved

ImgTransMode unsigned int Image transfer modes. Information only cannot be

set:

• Bit 0: 0: 14 bit, 1-12 bit

• Bit 1: reserved

• Bit 2: 0 bit stuffing disabled; 1 bit stuffing

enabled

• Bit 3: 0 padding to 1024 disabled; 1: padding

to 1024 enabled

2.12.3.4 GigE interface

Structure type is PCO_GIGE_TRANSFER_PARAM.

Transfer parameters of the GigE interface can be used to adapt the camera to the available NIC

and subnet structure.

Packet Delay: Indicates the delay (in µs) inserted between each ethernet packet for this stream

channel. This can be used as a crude flow-control mechanism, if the application or the network

infrastructure cannot keep up with the ethernet packets coming from the device. Recommended

values: 0...18000.

Calculation

table*
pco.dimax cs

Packet Delay 0 2000 4000 6000 8000

MB/s** 97 58 28 23 18

Continued on next page

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 238

Continued from previous page

pco.dimax cs

Packet Delay 10000 12000 14000 16000 18000

MB/s** 15 12 11 9 8

pco.dimax S/HD/HS and pco.1600-4000

Packet Delay 0 2000 4000 6000 8000

MB/s** 66 43 23 19 5

Packet Delay 10000 12000 14000 16000 18000

MB/s** 13 11 9 8 7

* if more cameras are connected to one switch, make sure that the overall calculated data rate is

less than 100 MByte/sec.

** estimated values (Depending on the PC’s HW).

Name Type Description

dwPacketDelay DWORD Sets the delay between two stream packets in µs:

• Default: 4000

• Valid range: 0 <= x <= 18000

dwResendPercent DWORD Information only cannot be set. Percentile part of lost

packages per image, which will be re-transferred, default

30. In case more packages got lost, the complete image

will be re-transferred till it times out and produces an error

dwFlags DWORD Sets single flags: (obsolete; can only be used with GigE

driver V2.0.0.3 and older versions):

• Bit 0: enable packet resend

• Bit 1: enable burst mode

• Bit 2: enable max speed mode

• Bit 3: reserved, set to zero

• Bit 4: transfer bandwidth distribution:

– 0: same bandwidth for all cameras

– 1: active camera gets whole bandwidth

• Bit 5-7: reserved, set to zero

dwDataFormat DWORD Data format of the transferred data. Information only

cannot be set.

dwCameraIPAddress DWORD Current IP address of the camera. Information only cannot

be set.

DwUDPImgPcktSize DWORD Size of an UDP image packet. Can only be set, if a

pco.dimax CS camera is used.

Ui64MACAddress UINT64 MAC address of camera. Information only, cannot be set.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 239

2.13 Special Commands pco.edge

Special commands for pco.edge family.

2.13.1 PCO_GetSensorSignalStatus

Description Gets the signal state of the camera sensor. The signals must not be deemed to be a real time

response of the sensor, since the command path adds a system dependent delay. Sending a

command and getting the camera response lasts about 2ms (+/- 1ms; for ’simple’ commands). In

case you need a closer synchronization use hardware signals.

Supported

camera type(s)

pco.edge, pco.dicam

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetSensorSignalStatus (

HANDLE ph, //in

DWORD* dwStatus, //out

DWORD* dwImageCount, //out

DWORD* dwReserved1, //out

DWORD* dwReserved2 //out

);

Parameter Name Type Description

hCam HANDLE Handle to a previously opened camera.

dwStatus DWORD* DWORD pointer to receive the status flags of the sensor (can be

NULL). Bit0: SIGNAL_STATE_BUSY 0x0001. Bit1: SIGNAL_-

STATE_IDLE 0x0002. Bit2: SIGNAL_STATE_EXP 0x0004. Bit3:

SIGNAL_STATE_READ 0x0008

dwImageCount DWORD* DWORD pointer to receive the # of the last finished image(can be

NULL).

dwReserved1 DWORD* DWORD pointer for future use (can be NULL).

dwReserved2 DWORD* DWORD pointer for future use (can be NULL).

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 240

2.13.1.1 Sensor action state bits

Flag name Value Description

Sensor_Busy 0x00000001 Sensor is busy and does not accept trigger

Sensor_Idle 0x00000002 Sensor is stopped

Sensor_exposing 0x00000004 Sensor is exposing

Sensor_readout 0x00000008 Sensor is in readout state

Bit4-31 Reserved

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 241

2.13.2 PCO_GetCmosLineTiming

Description The line timing mode is a third possibility to set the exposure and delay timing of a camera. In

order to use this mode the line timing parameter has to be set to CMOS_LINETIMING_PARAM_ON.

The camera will automatically generate the timing for each line to achieve the given line time.

Supported

camera type(s)

pco.edge with Camera Link interface

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetCmosLineTiming (

HANDLE ph, //in

WORD* wParameter, //out

WORD* wTimeBase, //out

DWORD* dwLineTime, //out

DWORD* dwReserved, //out

WORD wReservedLen //in

);

Parameter Name Type Description

hCam HANDLE Handle to a previously opened camera.

wParameter WORD* Pointer to a WORD to receive the on/off state

• 0x0000 = [off]

• 0x0001 = [on]

wTimeBase WORD* Pointer to a WORD to receive the time base

• 0x0000 = [ns]

• 0x0001 = [µs]

• 0x0002 = [ms]

dwLineTime DWORD* DWORD pointer to receive the line time

dwReserved DWORD* DWORD Reserved

wReservedLen WORD WORD Reserved

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 242

2.13.3 PCO_SetCmosLineTiming

Description The line timing mode is a third possibility to set the exposure and delay timing of a camera. In

order to use this mode the line timing parameter has to be set to CMOS_LINETIMING_PARAM_ON.

The camera will automatically generate the timing for each line to achieve the given line time.

Supported

camera type(s)

pco.edge with Camera Link interface

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetCmosLineTiming (

HANDLE ph, //in

WORD wParameter, //in

WORD wTimeBase, //in

DWORD dwLineTime, //in

DWORD* dwReserved, //in

WORD wReservedLen //in

);

Parameter Name Type Description

hCam HANDLE Handle to a previously opened camera.

wParameter WORD WORD variable to set the on/off state

• 0x0000 = [off]

• 0x0001 = [on]

wTimeBase WORD WORD variable to set the time base

• 0x0000 = [ns]

• 0x0001 = [µs]

• 0x0002 = [ms]

dwLineTime DWORD DWORD variable to set the line time

dwReserved DWORD* DWORD Reserved

wReservedLen WORD Reserved

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 243

2.13.4 PCO_GetCmosLineExposureDelay

Description This command gets the exposure and delay time for a frame. It is only available when the line

timing parameter is set to CMOS_LINETIMING_PARAM_ON.

Supported

camera type(s)

pco.edge with Camera Link interface

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetCmosLineExposureDelay (

HANDLE ph, //in

DWORD* dwExposureLines, //out

DWORD* dwDelayLines, //out

DWORD* dwReserved, //out

WORD wReservedLen //in

);

Parameter Name Type Description

hCam HANDLE Handle to a previously opened camera.

dwExposureLines DWORD* DWORD pointer to receive the number of lines for exposure

dwDelayLines DWORD* DWORD pointer to receive the number of lines for delay

dwReserved DWORD* DWORD pointer for future use (can be NULL)

wReservedLen WORD WORD variable to set the lenght of the dwReserved array in

DWORDS

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 244

2.13.5 PCO_SetCmosLineExposureDelay

Description This command sets the exposure and delay time for a frame. It is only available when the line

timing parameter is set to CMOS_LINETIMING_PARAM_ON.

Supported

camera type(s)

pco.edge with Camera Link interface

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetCmosLineExposureDelay (

HANDLE ph, //in

DWORD dwExposureLines, //in

DWORD dwDelayLines, //in

DWORD* dwReserved, //in

WORD wReservedLen //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera.

dwExposureLines DWORD DWORD to set the number of lines for exposure.

dwDelayLines DWORD DWORD to set the number of lines for delay.

dwReserved DWORD* DWORD pointer for future use (can be NULL).

wReservedLen WORD WORD variable to set the lenght of the dwReserved array in

DWORDS.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 245

2.13.6 PCO_SetTransferParametersAuto

Description Automatically sets the transfer parameters for a pco.edge 5.5. This is the recommended function in

case Soft-ROI is enabled. This function replaces PCO_G(S)etTransferParameter and PCO_SetActiveLookupTable

.

Supported

camera type(s)

pco.edge 5.5 with Camera Link interface

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetTransferParametersAuto (

HANDLE ph, //in

void* buffer, //in,out

int ilen //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera.

buffer void* Pointer to an array to receive the transfer parameters. Should be set to

NULL. Can be set to receive current setting. Initialize all parameters to

zero before.

ilen int Total length of the buffer in bytes. Should be set to 0.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 246

2.13.7 PCO_GetInterfaceOutputFormat

Description This function returns the current interface output format. For the pco.edge the interface output

format reflects the current setting of the SCCMOS readout format of the camera. An application

note for further information is available on request.

Supported

camera type(s)

pco.edge, pco.edge bi

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetInterfaceOutputFormat (

HANDLE ph, //in

WORD* wDestInterface, //in

WORD* wFormat, //out

WORD* wReserved1, //out

WORD* wReserved2 //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera.

wDestInterface WORD* Pointer to a WORD variable to set the interface to query:

• 0x0002 = [edge]

wFormat WORD* Pointer to a WORD variable to get requested information, see

SCCMOS readout format

wReserved1 WORD* Reserved (NULL pointer not allowed)

wReserved2 WORD* Reserved (NULL pointer not allowed)

Parameter

dependency

None

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 247

2.13.7.1 SCCMOS readout format

Value Name Description

1 0x0100 SCCMOS_FORMAT_TOP_CENTER_BOTTOM_CENTER

2 0x0200 SCCMOS_FORMAT_CENTER_TOP_CENTER_BOTTOM

3 0x0300 SCCMOS_FORMAT_CENTER_TOP_BOTTOM_CENTER

4 0x0400 SCCMOS_FORMAT_TOP_CENTER_CENTER_BOTTOM

5 0x0000 SCCMOS_FORMAT_TOP_BOTTOM Linear readout

Five different readout modes are available for pco.edge in Rolling Shutter readout mode. Standard

mode is Dual Outside in. In Single Top down, the pco.edge provides only half of the normal frame

rate.

1 2 3

4 5

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 248

2.13.8 PCO_SetInterfaceOutputFormat

Description This function sets the current interface output format. The interface output format reflects the

currently SCCMOS readout format of the camera. With the SCCMOS readout format the data

readout direction of the camera can be controlled. For all cameras with Camera Link interface it is

recommended to use PCO_SetTransferParameter function instead of this function, because the

driver layer must be informed about any changes in readout format to successfully rearrange the

image data.

Supported

camera type(s)

pco.edge, pco.edge bi

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetInterfaceOutputFormat (

HANDLE ph, //in

WORD wDestInterface, //in

WORD wFormat, //in

WORD wReserved1, //in

WORD wReserved2 //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera.

wDestInterface WORD WORD variable to set the desired interface

• 0x0002 = [edge]

wFormat WORD WORD variable to set the interface format, see SCCMOS

readout format

wReserved1 WORD Reserved

wReserved2 WORD Reserved

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 249

2.14 Special Commands pco.dimax

Special commands for pco.dimax S/HD/HS and pco.dimax cs.

2.14.1 PCO_GetImageTransferMode

Description Current image transfer mode settings are queried from the camera and the IMAGE_TRANSFER_-

MODE_PARAM Structure structure is filled with this information.

Windows only.

Supported

camera type(s)

pco.dimax with GigE or USB interface

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetImageTransferMode (

HANDLE ph, //in

void* param, //out

int ilen //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera

param void* Pointer to a IMAGE_TRANSFER_MODE_PARAM Structure

ilen int Length in bytes of the IMAGE_TRANSFER_MODE_PARAM Structure

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

2.14.1.1 IMAGE_TRANSFER_MODE_PARAM Structure

Name Type Description

wSize WORD Size of this struct

wMode WORD Transfer mode, e.g. full, scaled, cutout etc.

wImageWidth WORD Original image width

wImageHeight WORD Original image height

wTxWidth WORD Width of transferred image (scaled or cutout)

wTxHeight WORD Width of transferred image (scaled or cutout)

wParam WORD[8] Parameter meaning depends on selected mode set to zero if

not used

ZZwDummy WORD[10] Reserved

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 250

2.14.1.2 Transfer mode definition

Name Value Description

IMAGE_TRANSFER_MODE_STANDARD 0x0000 Images as recorded from

the camera

IMAGE_TRANSFER_MODE_SCALED_XY_8BIT 0x0001 Scaled image with

TxWidth=ImageWidth/2,

TxHeight=ImageHeight/2

IMAGE_TRANSFER_MODE_CUTOUT_XY_8BIT 0x0002 Region of image with

TxWidth=ImageWidth/2,

TxHeight=ImageHeight/2,

Offset parameter are set

with wParam

IMAGE_TRANSFER_MODE_FULL_RGB_24BIT 0x0003 Reserved, not

implemented

IMAGE_TRANSFER_MODE_BIN_SCALED_8BIT_BW 0x0004 Binary scaled image

IMAGE_TRANSFER_MODE_BIN_SCALED_8BIT_COLOR 0x0005 Binary scaled and color

transformed image

IMAGE_TRANSFER_MODE_TEST_ONLY 0x8000 Test image

2.14.1.3 Parameter transfer mode cutout XY

Name Type Description

wParam[0] WORD Horizontal offset in pixel. Valid range: 0 <= x <= ImageWidth/2

wParam[1] WORD Vertical offset in pixel. Valid range: 0 <= x <= ImageHeight/2

2.14.1.4 Parameter transfer mode scaled 8 bit

Name Type Description

wParam[0] WORD Scale factor of image. Allowed values 1 / 2 / 4 / 8 / 16

2.14.2 PCO_SetImageTransferMode

Description This function does set the scaled image transfer mode of the camera. The image transfer mode

can be used to transfer scaled images from the internal memory of the camera. With scaled image

transfer the amount of data, which must be transferred for one image, is reduced and therefore

the image display frequency can be enhanced. An application can use this mode for display of

thumbnails or faster image preview, when camera setup is performed e.g. adjust and focus the

camera lens.

The IMAGE_TRANSFER_MODE_PARAMStructuremust be filledwith appropriate values. Because

scaled image transfer mode is a special mode inside the camera the size parameters must be set

to the original camera recording size for the image allocation and acquisition functions like PCO_-

AllocateBuffer, PCO_GetImageEx or PCO_AddBufferEx.

When any size related camera settings are changed the PCO_SetImageTransferMode has to

be called again in order to correctly calculate the transferred amount of data. Also when reading

images fromdifferent Camera RAMsegments, which have different image sizes, thePCO_SetImageTransferMode

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 251

has to be called after selecting another segment and before reading the images.

Before an application is closed the scaled image transfer mode must be reset to standard mode.

Windows only

Supported

camera type(s)

pco.dimax with GigE or USB interface

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetImageTransferMode (

HANDLE ph, //in

void* param, //in

int ilen //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera

param void* Pointer to a IMAGE_TRANSFER_MODE_PARAM Structure

ilen int Length in bytes of IMAGE_TRANSFER_MODE_PARAM Structure

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 252

2.14.3 PCO_GetCDIMode

Description This function returns the current CDI (correlated double image) mode from the camera.

Supported

camera type(s)

pco.dimax

Descriptor

dependency

dwGeneralCapsDESC1: CDI_MODE

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetCDIMode (

HANDLE ph, //in

WORD* wCDIMode //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera

wCDIMode WORD* Pointer to a WORD to receive the current CDI mode setting:

• 0x0000 = [CDI mode off]

• 0x0001 = [CDI mode on]

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 253

2.14.4 PCO_SetCDIMode

Description This function does set the CDI (correlated double image) mode in the camera.

Supported

camera type(s)

pco.dimax

Descriptor

dependency

dwGeneralCapsDESC1: CDI_MODE

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetCDIMode (

HANDLE ph, //in

WORD wCDIMode //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera

wCDIMode WORD WORD variable to set the CDI mode:

• 0x0000 = [CDI mode off]

• 0x0001 = [CDI mode on]

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 254

2.14.5 PCO_GetPowerSaveMode

Description This function returns the current power save mode from the camera.

The power save mode may be used for pco.dimax cameras with an external backup battery

connected. Using the PCO_SetPowerSaveMode command the camera can be configured to

change automatically into a special power savemodewhen themain power supply is disconnected

or fails. The time how long the main power supply must be off until the camera changes into power

save mode, can be set with the command. Note that the camera cannot be accessed by software

when it is in power save, however the images recorded are kept over several hours. In order to get

the camera back to normal operation, the main power supply has to be restored. An application

note for further information is available on request.

Supported

camera type(s)

pco.dimax

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetPowerSaveMode (

HANDLE ph, //in

WORD* wMode, //out

WORD* wDelayMinutes //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera

wMode WORD* Pointer to aWORD variable to get the current power save mode:

• 0x0000 = [off] default

• 0x0001 = [on]

wDelayMinutes WORD* Pointer to a WORD variable to get the delay in minutes, after

which he camera enters power save mode when main power is

lost

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 255

2.14.6 PCO_SetPowerSaveMode

Description This function does set the power save mode of the camera.

Supported

camera type(s)

pco.dimax

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetPowerSaveMode (

HANDLE ph, //in

WORD wMode, //in

WORD wDelayMinutes //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera

wMode WORD WORD variable to set the power save mode:

• 0x0000 = [off] default

• 0x0001 = [on]

wDelayMinutes WORD WORD variable to set the delay in minutes, after which the

camera enters power save mode when main power is lost.

The current switching delay is between wDelayMinutes and

wDelayMinutes + 1.

Valid range is from 1 to 60.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 256

2.14.7 PCO_GetBatteryStatus

Description This function returns the current state of the battery package connected to the camera.

Supported

camera type(s)

pco.dimax

Descriptor

dependency

wPowerDownModeDESC

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetBatteryStatus (

HANDLE ph, //in

WORD* wBatteryType, //out

WORD* wBatteryLevel, //out

WORD* wPowerStatus, //out

WORD* wReserved, //out

WORD wNumReserved //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera

wBatteryType WORD* Pointer to a WORD variable to get the battery type:

• 0x0000 = no battery mounted

• 0x0001 = nickel metal hydride type

• 0x0002 = lithium ion type

• 0x0003 = lithium iron phosphate type

• 0x0004 = battery dimax cs

• 0xFFFF = unknown battery type

wBatteryLevel WORD* Pointer to a WORD variable to get the charge condition of the

battery calculated in percent

wPowerStatus WORD* Pointer to a WORD variable to get the overall power state:

• 0x0001 = power supply is available

• 0x0002 = battery mounted and detected

• 0x0004 = battery is charged

Bits can be combined e.g. 0x0003 means that camera has a

battery and is running on external power, 0x0002: camera runs

on battery

wReserved WORD* Reserved

wNumReserved WORD Reserved

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 257

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 258

2.15 Special Commands pco.dimax with HD-SDI

Special commands for pco.dimax with HD-SDI interface.

2.15.1 PCO_GetInterfaceOutputFormat

Description This function returns the current interface output format. For the pco.dimax the interface output

shows the selection of the active image streaming interface. If the interface format is set to [off],

then image data will be transferred through the standard interface, e.g. GigE or USB. If the interface

is set to any of the predefined HD-SDI modes a continuous image data stream is output on the HD-

SDI connector and the current image size setting of the camera depend on the selected HD-SDI

format. Setting of ROI is not possible when HD-SDI output is enabled.

Supported

camera type(s)

pco.dimax with HD-SDI interface

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetInterfaceOutputFormat (

HANDLE ph, //in

WORD* wDestInterface, //in

WORD* wFormat, //out

WORD* wReserved1, //out

WORD* wReserved2 //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera

wDestInterface WORD* Pointer to a WORD variable to set the interface to query

• 0x0001 = [HD-SDI]

wFormat WORD* Pointer to a WORD variable to get the interface format:

• 0x0000 = [off]

• see table HD-SDI formats

wReserved1 WORD* Reserved (NULL pointer not allowed)

wReserved2 WORD* Reserved (NULL pointer not allowed)

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 259

2.15.2 PCO_SetInterfaceOutputFormat

Description This function does set the interface output format of the pco.dimax; this will enable streaming

through the active image streaming interface (� HD-SDI interface).

If the interface format is set to [off], then image data will be transferred through the standard

interface, e.g. GigE or USB. If the interface is set to any of the predefined HD-SDI modes a

continuous image data stream is output on the HD-SDI connector and the current image size

setting of the camera depend on the selected HD-SDI format. It is not possible to set a ROI, when

HD-SDI output is enabled.

Supported

camera type(s)

pco.dimax with HD-SDI interface

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetInterfaceOutputFormat (

HANDLE ph, //in

WORD wDestInterface, //in

WORD wFormat, //in

WORD wReserved1, //in

WORD wReserved2 //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera

wDestInterface WORD WORD variable to set the interface to change:

• 0x0001 = [HD-SDI]

wFormat WORD WORD variable to set the interface format:

• 0x0000 = [off]

• see table HD-SDI formats

wReserved1 WORD Reserved must be set to 0

wReserved2 WORD Reserved must be set to 0

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 260

2.15.2.1 HD-SDI formats

Name Description

#define HDSDI_FORMAT_OUTPUT_OFF 0x0000

#define HDSDI_FORMAT_1080P25_SINGLE_LINK_RGB 0x0001

#define HDSDI_FORMAT_1080P50_DUAL_LINK_RGB 0x0003

#define HDSDI_FORMAT_1080P30_SINGLE_LINK_RGB 0x000B

#define HDSDI_FORMAT_1080P2997_SINGLE_LINK_RGB 0x000C

#define HDSDI_FORMAT_1080P24_SINGLE_LINK_RGB 0x000D

#define HDSDI_FORMAT_1080P2398_SINGLE_LINK_RGB 0x000E

#define HDSDI_FORMAT_720P24_SINGLE_LINK_RGB 0x0017

#define HDSDI_FORMAT_720P2398_SINGLE_LINK_RGB 0x0018

2.15.3 PCO_PlayImagesFromSegmentHDSDI

Description This function does setup the image output on the HD-SDI interface.

It is used to stream the recorded images from the camera internal memory (CamRAM) to the HD-

SDI interface. The HD-SDI interface is an output only interface, therefore it does not request

images, but it has to be supplied with a continuous data stream.

This function can only be used, if PCO_SetStorageMode is set to [recorder] and recording to the

camera RAM segment is stopped.

IfPCO_PlayImagesFromSegmentHDSDI is called, the sequence is started and the function returns

immediately. Streaming time for the entire recorded sequence may take seconds or up to minutes

depending on the chosen parameters.

The play speed is defined by the wSpeed parameter together with the wMode parameter:

• Fast forward: The play position is increased by wSpeed, so (wSpeed - 1) images are leaped

• Fast rewind: The play position is decreased by wSpeed, so (wSpeed - 1) images are leaped

• Slow forward: The current image is sent wSpeed times before the position is increased

• Slow rewind: The current image is sent wSpeed times before the position is decreased

With the play command parameters (e.g. wSpeed) can also be changed while a play is active.

The parameters will be changed immediately. It is possible to change parameters like play speed

or play direction without changing the current position by setting Start No. to -1 (as DWORD 0

xFFFFFFFF).

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 261

Supported

camera type(s)

pco.dimax with HD-SDI interface

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_PlayImagesFromSegmentHDSDI (

HANDLE ph, //in

WORD wSegment, //in

WORD wInterface, //in

WORD wMode, //in

WORD wSpeed, //in

DWORD dwRangeLow, //in

DWORD dwRangeHigh, //in

DWORD dwStartPos //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera

wSegment WORD Number of segment of the RAM segment to read from

wInterface WORD Select destination interface. Must be set to 0

wMode WORD WORD to set the play mode:

• 0x0000 = Stop, switch data stream off

• 0x0001 = Play (fast) forward

• 0x0002 = Play (fast) backward (rewind)

• 0x0003 = Play slow forward

• 0x0004 = Play slow backward (rewind)

Mode & 0x0100 = 0: At the end just repeat the last image (freeze

image)

Mode & 0x0100 = 1: At the end replay sequence from beginning

Other values reserved for future modes

wSpeed WORD Either stepping (fast play mode) or repeat count (slow play mode)

dwRangeLow DWORD Lowest image number of range to be played

dwRangeHigh DWORD Highest image number of range to be played

dwStartPos DWORD Start with this image number or leave unchanged (-1)

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

Some

examples

Assuming that a record to a segment has been finished and there are N images in the segment.

The function PCO_GetNumberOfImagesInSegment can be used to query the current number of

images N in a segment.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 262

Desired function
Range

Low

Range

High
Start No.1 Speed Mode

Play / Start complete sequence 1 N 1 1 0x0001

Fast Forward (speed x 10) 1 N 1 10 0x0001

Fast Rewind (speed x 10) 1 N N 10 0x0002

Slow Forward (1/5th in speed) 1 N N 5 0x0003

Slow Rewind (1/5th in speed) 1 N N 5 0x0004

Cut out (starting with 1) j ≥ 1 k ≤ N 1 1 0x0001

Cut out (starting with m) j ≥ 1 k ≤ N 1 …m …N 1 0x0001

Change Play Speed (to x 20) 1 N -1 20 0x0001

Change Play Direction (to rewind) 1 N -1 20 0x0003

Change current Play Position 1 N 1 ≤ p ≤ N 20 0x0001

Display image k as freezed image 1 N k 0 0x0001

Switch HD/SDI off 0 0 0 0 0x0000

When changing the range and the current image position or the Start Number parameter is out

of range, the position will be set to the following positions:

• Play forward: Range Low (with replay) or Range High (without replay)

• Play reverse: Range High (with replay) or Range Low (without replay)

Record frame rate and play frame rate:

Please note that the speed parameter does not depend on the recorded frame rate at all. Speed

parameter 1 always means that the recorded images are sent one after another without leaps, as

fast as possible for the selected interface and the selected format.

Thus if the record frame rate is 1000 fps and the output frame rate defined by the interface and

the output format is 50 fps, it will result in a play speed which is 20 times slower than the record

frame rate. So with speed parameter set to 1, the sequence will appear as a slow motion when

played. To see the sequence as it really happened the speed parameter has to be set to 20.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 263

2.15.4 PCO_GetPlayPositionHDSDI

Description The function PCO_GetPlayPositionHDSDI queries the current position of the play pointer of the

currently started sequence. Due to time necessary for communication and processing of the

command, the current pointer may be 1 or 2 steps images ahead at the time, when the function

returns.

Supported

camera type(s)

pco.dimax with HD-SDI interface

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetPlayPositionHDSDI (

HANDLE ph, //in

WORD* wStatus, //out

DWORD* dwPlayPosition //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera

wStatus WORD* Pointer to a WORD variable to get current play state:

• 0x0000 = no play active or play has already stopped

• 0x0001 = play is active

dwPlayPosition DWORD* Number of the image currently streamed to the HD-SDI

interface. It is between range low and range high, as set by

PCO_PlayImagesFromSegmentHDSDI

Only valid, when sequence play is still active

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 264

2.15.5 PCO_GetColorSettings

Description Gets the current color convert parameters of the camera.

Supported

camera type(s)

pco.dimax with HD-SDI interface

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetColorSettings (

HANDLE ph, //in

PCO_Image_ColorSet* strColorSet //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera

strColorSet PCO_Image_ColorSet* Pointer to a PCO_Image_ColorSet Structure

structure to receive the color convert parameter

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 265

2.15.6 PCO_SetColorSettings

Description Sets the color convert parameters of the camera.

Supported

camera type(s)

pco.dimax with HD-SDI interface

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetColorSettings (

HANDLE ph, //in

PCO_Image_ColorSet* strColorSet //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera

strColorSet PCO_Image_ColorSet* Pointer to a PCO_Image_ColorSet Structure

structure to set the color convert parameters

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

2.15.6.1 PCO_Image_ColorSet Structure

Name Type Description

wSize WORD Size of this struct

sSaturation SHORT Saturation from -100 to 100, 0 is default

sVibrance SHORT Vibrance from -100 to 100, 0 is default

wColorTemp WORD Color temperature from 2000K to 20000K; can be used for

manual white balance

sTint SHORT Tint from -100 to 100, 0 is default; can be used for manual white

balance

wMulNormR WORD Not used, must be set to 0x8000

wMulNormG WORD Not used, must be set to 0x8000

wMulNormB WORD Not used, must be set to 0x8000

sContrast SHORT Contrast from -100 to 100, 0 is default; must be set to 0, if any

of the LUT’s is used

wGamma WORD Gamma in percent; Valid range: 40 <= x <= 250, where 100

corresponds to the gamma value of 1.00; Not used 0, if any of

the LUT’s is used

wSharpFixed WORD 0 = off, 100 = maximum

Continued on next page

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 266

Continued from previous page

Name Type Description

wSharpAdaptive WORD 0 = off, 100 = maximum

wScaleMin WORD 0 to 4095

wScaleMax WORD 0 to 4095

wProcOptions WORD Processing options as bit mask:

• 0x0001 = ColorRefine Filter On

When the color refine filter is set to ON color artefacts from the

debayering process are reduced

ZZwDummy[92] WORD Reserved

2.15.7 PCO_DoWhiteBalance

Description This function does start a white balance calculation process. The function must only be called,

when images are transmitted to the HD-SDI interface and one of the color formats is selected. The

function does return immediately. The camera uses a 50% image region in the center of the image

to calculate new values for wColorTemp and sTint of the PCO_Image_ColorSet Structure.

Supported

camera type(s)

pco.dimax with HD-SDI interface

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_DoWhiteBalance (

HANDLE ph, //in

WORD wMode, //in

WORD* wParam, //in

WORD wParamLen //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera

wMode WORD WORD variable:

• 0x0001 = start white balance process

wParam WORD* Pointer to a WORD array for additional parameters. Not used at the

moment

wParamLen WORD WORD variable which holds the number of entries in thewParam array

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 267

2.16 Special Commands pco.flim

Special commands for pco.flim camera system.

2.16.1 PCO_GetFlimModulationParameter

Description This function can be used to query the current modulation signal settings of the pco.flim.

Supported

camera type(s)

pco.flim

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetFlimModulationParameter (

HANDLE ph, //in

WORD* wSourceSelect, //out

WORD* wOutputWaveform, //out

WORD* wReserved1, //out

WORD* wReserved2 //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera

wSourceSelect WORD* Pointer to aWORD variable to receive the modulation source:

• 0x0000 = [intern]: The modulation signal is generated

internally by the camera. The camera acts as frequency

master

• 0x0001 = [extern]: The camera is using an external

clock source present at the modulation input <mod -

in>. The camera acts as frequency slave.

wOutputWaveform WORD* Pointer to a WORD variable to receive the modulation

waveform of the homodyne modulation signal:

• 0x0000 = [none]: The modulation output <out - mod>

is disabled

• 0x0001 = [sinusoidal]: The modulation output <out -

mod> is enabled and generates a sinusoidal waveform

• 0x0002 = [rectangular]: The modulation output <out-

mod> is enabled and generates a rectangular waveform

wReserved1 WORD* Reserved

wReserved2 WORD* Reserved

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 268

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

2.16.2 PCO_SetFlimModulationParameter

Description This function does set the modulation mode of the pco.flim. With this function the source of the

modulation frequency signal can be selected and whether the signal is sent to the modulation

output line <out - mod>. Furthermore the shape of the output waveform can be selected. No

PCO_ArmCamera command is required to change these settings.

Supported

camera type(s)

pco.flim

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetFlimModulationParameter (

HANDLE ph, //in

WORD wSourceSelect, //in

WORD wOutputWaveform, //in

WORD wReserved1, //in

WORD wReserved2 //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera

wSourceSelect WORD WORD variable to set the modulation source:

• 0x0000 = [intern]:

The modulation signal is generated internally by the

camera. The camera acts as frequency master.

The modulation frequency is set with function PCO_-

SetFlimMasterModulationFrequency.

• 0x0001 = [extern]:

The camera is set to use an external clock source

present at the modulation input <mod - in>. The

input frequency has to be stable and within the valid

frequency range (see pco.flim datasheet).

Continued on next page

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 269

Continued from previous page

Name Type Description

wOutputWaveform WORD WORD variable to set the modulation waveform:

• 0x0000 = [none]: The modulation output <out - mod>

is disabled

• 0x0001 = [sinusoidal]: The modulation output <out -

mod> is enabled and generates a sinusoidal waveform.

• 0x0002 = [rectangular]: The modulation output <out -

mod> is enabled and generates a rectangular waveform

wReserved1 WORD Reserved for future use, set to zero

wReserved2 WORD Reserved for future use, set to zero

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes

• 0x80001100 =

PCO_ERROR_FIRMWARE_FLICAM_EXT_MOD_OUT_OF_RANGE

.

If the modulation frequency of the external signal is out of

range

• 0x80001101 =

PCO_ERROR_FIRMWARE_FLICAM_SYNC_PLL_NOT_LOCKED.

If the camera can not lock its internal frequency to the

modulation frequency of the external signal

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 270

2.16.3 PCO_GetFlimMasterModulationFrequency

Description This function can be used to query the current modulation frequency, which is used when the

camera is configured as frequency master (see function PCO_SetFlimModulationParameter).

Supported

camera type(s)

pco.flim

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetFlimMasterModulationFrequency (

HANDLE ph, //in

DWORD* dwFrequency //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera

dwFrequency DWORD* Pointer to a DWORD variable to receive the modulation frequency

in units of Hertz (Hz)

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 271

2.16.4 PCO_SetFlimMasterModulationFrequency

Description This function does set the modulation frequency of the camera. The camera has to be configured

as frequency master (see function PCO_SetFlimModulationParameter).

No PCO_ArmCamera is required to change this setting.

Supported

camera type(s)

pco.flim

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetFlimMasterModulationFrequency (

HANDLE ph, //in

DWORD dwFrequency //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera

dwFrequency DWORD DWORD variable to set the modulation frequency in units of Hertz

(Hz). The specified value must be in the range from 0 Hz to 50 MHz

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 272

2.16.5 PCO_GetFlimPhaseSequenceParameter

Description Get configuration for the generation of phase image sequences. The combination of the described

options determines the resulting length and sorting of phase sequences. One phase sequence

is a sequence of single (phase) images sampled at different points within the full modulation period

of 360°. Because each parameter has an influence on each other, table Image Sequences should

be used to determine the resulting image sequence.

Supported

camera type(s)

pco.flim

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetFlimPhaseSequenceParameter (

HANDLE ph, //in

WORD* wPhaseNumber, //out

WORD* wPhaseSymmetry, //out

WORD* wPhaseOrder, //out

WORD* wTapSelect, //out

WORD* wReserved1, //out

WORD* wReserved2 //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera

Continued on next page

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 273

Continued from previous page

Name Type Description

wPhaseNumber WORD* Pointer to a WORD variable to receive the number of phases.

Number of equidistant phases per modulation period of 360°,

where following options are available:

• 0x0000 = [manual shifting]:

This special mode is used in conjunction with the

function PCO_SetFlimRelativePhase. The modulation

period of 360° is divided into 2 phases, where

– tap A carries the phase information at the relative

phase phi

– tap B carries the phase information at the relative

phase phi+180°

The relative phase phi can be adjusted using the function

PCO_SetFlimRelativePhase. The relative phase phi is

automatically set to zero when a PCO_ArmCamera is

performed and [manual shifting] mode is selected. The

options wPhaseSymmetry and wPhaseOrder have no

effect in [manual shifting] mode

• 0x0001 = [2 phases]:

The modulation period of 360° is divided into 2 phases:

0° and 180°

• 0x0002 = [4 phases]:

The modulation period of 360° is divided into 4 phases:

0°, 90°, 180° and 270°

• 0x0003 = [8 phases]:

The modulation period of 360° is divided into 8 phases:

0°, 45°, 90°, 135°, 180°, 225°, 270° and 315°

• 0x0004 = [16 phases]:

The modulation period of 360° is divided into 16 phases:

0°, 22.5°, 45°, 67.5°, 90°, 112.5°, 135°, 157.5°, 180°,

202.5°, 225°, 247.5°, 270°, 292.5°, 315° and 337.5°

wPhaseSymmetry WORD* Pointer to a WORD variable to receive the phase symmetry.

This parameter determines how the phase images are

represented by tap A and tap B:

• 0x0000 = [singular]

The first half period of modulation (0° to 180°) is covered

by tap A, whereas the second half period (180° to 360°)

is covered by tap B

• 0x0001 = [twice]

The complete modulation period of 360° is covered by

both taps A and B, doubling the resulting number of

single phase images per sequence

Continued on next page

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 274

Continued from previous page

Name Type Description

wPhaseOrder WORD* Pointer to a WORD variable to receive the phase order. This

parameter has only effect if wPhaseSymmetry = [twice]. While

the taps A and B are always read-out alternately from the

image sensor (the option wTapSelect determines which of

them are output at the camera interface), the sorting of these

phase image pairs (tap A and B) within a sequence is controlled

by this parameter.

• 0x0000 = [ascending]

The phase-shifted phase image pairs (tap A and B) are

within an ascending order

• 0x0001 = [opposite]

The phase-shifted phase image pairs (tap A and

B) are sorted in an opposite manner. Must be

selected for asymmetry correction mode using the

function PCO_SetFlimImageProcessingFlow with the

parameter wAsymmetryCorrection = [average]

wTapSelect WORD* Pointer to a WORD variable to receive the tap selection. This

parameter determines which taps (A and/or B) are output at

the camera interface. (Since tap B carries the 180°-shifted

information compared to tap A, it is also sometimes denoted

as “tap 180”, whereas tap A is denoted as “tap 0”.).

• 0x0000 = [both]: Both taps A and B are output in the

order A, B, A, B, …

• 0x0001 = [tap A]: Only tap A is output

• 0x0002 = [tap B]: Only tap B is output

wReserved1 WORD* Reserved for future use, can be zero. Content will be set to

zero

wReserved2 WORD* Reserved for future use, can be zero. Content will be set to

zero

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 275

2.16.6 PCO_SetFlimPhaseSequenceParameter

Description Set configuration for the generation of phase image sequences. The combination of the described

options determines the resulting length and sorting of phase sequences. One phase sequence is

a sequence of single (phase) images covering a modulation period of 360°. A PCO_ArmCamera

is required to update these settings.

Supported

camera type(s)

pco.flim

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetFlimPhaseSequenceParameter (

HANDLE ph, //in

WORD wPhaseNumber, //in

WORD wPhaseSymmetry, //in

WORD wPhaseOrder, //in

WORD wTapSelect, //in

WORD wReserved1, //in

WORD wReserved2 //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera

Continued on next page

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 276

Continued from previous page

Name Type Description

wPhaseNumber WORD WORD variable to set the number of phases.

Number of equidistant phases per modulation period of 360°,

where following options are available:

• 0x0000 = [manual shifting]:

This special mode is used in conjunction with the

function PCO_SetFlimRelativePhase. The modulation

period of 360° is divided into 2 phases, where

– tap A carries the phase information at the relative

phase phi

– tap B carries the phase information at the relative

phase phi+180°

The relative phase phi can be adjusted using the function

PCO_SetFlimRelativePhase. The relative phase phi is

automatically set to zero when a PCO_ArmCamera is

performed and [manual shifting] mode is selected. The

options wPhaseSymmetry and wPhaseOrder have no

effect in [manual shifting] mode

• 0x0001 = [2 phases]:

The modulation period of 360° is divided into 2

phases: 0° and 180°. Depending on the option

wPhaseSymmetry this phase information is carried by

tap A and tap B as following:

– wPhaseSymmetry = [singular]:

* tap A carries the phase information: 0°

* tap B carries the phase information: 180°

– wPhaseSymmetry = [twice]:

* tap A carries the phase information: 0°, 180°

* tap B carries the phase information: 0°, 180°

• 0x0002 = [4 phases]:

The modulation period of 360° is divided into 4 phases:

0°, 90°, 180° and 270°. Depending on the option

wPhaseSymmetry this phase information is carried by

tap A and tap B as following:

– wPhaseSymmetry = [singular]:

* tap A carries the phase information: 0°, 90°

* tap B carries the phase information: 180°, 270°

– wPhaseSymmetry = [twice]:

* tap A carries the phase information: 0°, 90°,

180°, 270°

* tap B carries the phase information: 0°, 90°,

180°, 270°

Continued on next page

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 277

Continued from previous page

Name Type Description

• 0x0003 = [8 phases]:

The modulation period of 360° is divided into 8 phases:

0°, 45°, 90°, 135°, 180°, 225°, 270° and 315°. Depending

on the option wPhaseSymmetry this phase information is

carried by tap A and tap B as following:

– wPhaseSymmetry = [singular]:

* tap A carries the phase information: 0°, 45°,

90°, 135°

* tap B carries the phase information: 180°, 225°,

270°, 315°

– wPhaseSymmetry = [twice]:

* tap A carries the phase information: 0°, 45°,

90°, 135°, 180°, 225°, 270°, 315°

* tap B carries the phase information: 0°, 45°,

90°, 135°, 180°, 225°, 270°, 315°

• 0x0004 = [16 phases]:

The modulation period of 360° is divided into 16 phases:

0°, 22.5°, 45°, 67.5°, 90°, 112.5°, 135°, 157.5°, 180°,

202.5°, 225°, 247.5°, 270°, 292.5°, 315° and 337.5°.

Depending on the option wPhaseSymmetry this phase

information is carried by tap A and tap B as following:

– wPhaseSymmetry = [singular]:

* tap A carries the phase information: 0°, 22.5°,

45°, 67.5°, 90°, 112.5°, 135°, 157.5°

* tap B carries the phase information: 180°,

202.5°, 225°, 247.5°, 270°, 292.5°, 315°, 337.5°

– wPhaseSymmetry = [twice]:

* tap A carries the phase information: 0°, 22.5°,

45°, 67.5°, 90°, 112.5°, 135°, 157.5°, 180°,

202.5°, 225°, 247.5°, 270°, 292.5°, 315°, 337.5°

* tap B carries the phase information: 0°, 22.5°,

45°, 67.5°, 90°, 112.5°, 135°, 157.5°, 180°,

202.5°, 225°, 247.5°, 270°, 292.5°, 315°, 337.5°

Continued on next page

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 278

Continued from previous page

Name Type Description

wPhaseSymmetry WORD WORD variable to set the phase symmetry. This parameter

determines how the phase images are represented by tap A

and tap B:

• 0x0000 = [singular]

The first half period of modulation (0° to 180°) is covered

by tap A, whereas the second half period (180° to 360°)

is covered by tap B.

• 0x0001 = [twice]

The complete modulation period of 360° is covered by

both taps A and B, doubling the resulting number of

single phase images per sequence

wPhaseOrder WORD WORD variable to set the phase order. This parameter has

only effect if wPhaseSymmetry = [twice]. While the taps A and

B are always read-out alternately from the image sensor (the

option wTapSelect determines which of them are output at the

camera interface), the sorting of these phase image pairs (tap

A and B) within a sequence is controlled by this parameter.

• 0x0000 = [ascending]

The phase-shifted phase image pairs (tap A and B) are

within an ascending order.

• 0x0001 = [opposite]

The phase-shifted phase image pairs (tap A and

B) are sorted in an opposite manner. Must be

selected for asymmetry correction mode using the

function PCO_SetFlimImageProcessingFlow with the

parameter wAsymmetryCorrection = [average]

wTapSelect WORD WORD variable to set the tap selection This parameter

determines which taps (A and/or B) are output at the camera

interface. (Since tap B carries the 180°-shifted information

compared to tap A, it is also sometimes denoted as “tap 180”,

whereas tap A is denoted as “tap 0”.)

• 0x0000 = [both]: Both taps A and B are output in the

order A, B, A, B, …

• 0x0001 = [tap A]: Only tap A is output.

• 0x0002 = [tap B]: Only tap B is output.

wReserved1 WORD Reserved for future use, set to zero

wReserved2 WORD Reserved for future use, set to zero

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 279

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

Examples Example 1

• wPhaseNumber = [4 phases]

• wPhaseSymmetry = [twice]

• wPhaseOrder = [ascending]

• wTapSelect = [both]

PCO_SetFlimPhaseSequenceParameter(ph, 0x0002, 0x0001, 0x0000, 0x0000←↩
,);

The resulting phase image sequence out of the camera is:

0° (tap A), 180° (tap B), 90° (tap A), 270° (tap B), 180° (tap A), 0° (tap B), 270° (tap A), 90° (tap B)

Example 2

• wPhaseNumber = [4 phases]

• wPhaseSymmetry = [twice]

• wPhaseOrder = [opposite]

• wTapSelect = [both]

PCO_SetFlimPhaseSequenceParameter(ph, 0x0002, 0x0001, 0x0001, 0x0000←↩
,);

The resulting phase image sequence out of the camera is:

0° (tap A), 180° (tap B), 180° (tap A), 0° (tap B), 90° (tap A), 270° (tap B), 270° (tap A), 90° (tap B)

Remark The current length of each phase image sequence depends on the options described above. The

number given by wPhaseNumber is doubled if wPhaseSymmetry = [twice]. The current length is

halved, if wTapSelect is configured to select only one tap (A or B) instead of both. Furthermore, if

the asymmetry correction mode is selected (see function PCO_SetFlimImageProcessingFlow),

the current length is further halved.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 280

2.16.7 PCO_GetFlimRelativePhase

Description This function can be used to query the current relative phase setting, which is used when the

camera is configured for manual phase shifting.

See function PCO_SetFlimPhaseSequenceParameter.

Supported

camera type(s)

pco.flim

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetFlimRelativePhase (

HANDLE ph, //in

DWORD* dwPhaseMilliDeg //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera

dwPhaseMilliDeg DWORD* Pointer to a DWORD variable to receive the relative phase in

units of millidegrees. The returned value has to be divided by

1000 to obtain the relative phase in units of degrees

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 281

2.16.8 PCO_SetFlimRelativePhase

Description This function does set the relative phase value, if the camera is configured for manual phase shifting

(see function PCO_SetFlimPhaseSequenceParameter).

No PCO_ArmCamera is required to change the relative phase setting, but the relative phase value

is reset to zero, when the current mode is set to [manual shifting] and a PCO_ArmCamera is

performed.

Supported

camera type(s)

pco.flim

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetFlimRelativePhase (

HANDLE ph, //in

DWORD dwPhaseMilliDeg //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera

dwPhaseMilliDeg DWORD DWORD variable to set the relative phase in units of

millidegrees. Valid range: 0 <= x < 360000, where 1000

corresponds to the relative phase value of 1.000 degrees.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 282

2.16.9 PCO_GetFlimImageProcessingFlow

Description Get settings of pco.flim specific internal image processing inside the camera.

Supported

camera type(s)

pco.flim

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetFlimImageProcessingFlow (

HANDLE ph, //in

WORD* wAsymmetryCorrection, //out

WORD* wCalculationMode, //out

WORD* wReferencingMode, //out

WORD* wThresholdLow, //out

WORD* wThresholdHigh, //out

WORD* wOutputMode, //out

WORD* wReserved1, //out

WORD* wReserved2, //out

WORD* wReserved3, //out

WORD* wReserved4 //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera

wAsymmetryCorrection WORD* Pointer to a WORD variable to receive the asymmetry

correction mode.

This parameter can be used to perform an asymmetry

correction of taps A and B due to dynamic

imbalances of their responsivities. This is done

by the computation of the arithmetic mean of

tap A and tap B, both carrying the same phase

information. To use that mode, the function PCO_-

SetFlimPhaseSequenceParameter has to be called

with the parameters wPhaseSymmetry = [twice],

wPhaseOrder = [opposite] and wTapSelect = [both]

with wPhaseNumber other than [manual shifting].

• 0x0000 = [off]: Asymmetry correction mode is

disabled

• 0x0001 = [average]: Asymmetry correction

mode using the arithmetic mean is enabled.

wCalculationMode WORD* Reserved. Content will be set to zero

wReferencingMode WORD* Reserved. Content will be set to zero

wThresholdLow WORD* Reserved. Content will be set to zero

wThresholdHigh WORD* Reserved. Content will be set to zero

Continued on next page

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 283

Continued from previous page

Name Type Description

wOutputMode WORD* Pointer to a WORD variable to receive the output

mode.

• 0x0001 = [multiply x2]

If this flag is set, the pixel values of the phase images

are multiplied by two to virtually reach saturation

earlier.

wReserved1 WORD* Reserved for future use, can be NULL. Content will be

set to zero

wReserved2 WORD* Reserved for future use, can be NULL. Content will be

set to zero

wReserved3 WORD* Reserved for future use, can be NULL. Content will be

set to zero

wReserved4 WORD* Reserved for future use, can be NULL. Content will be

set to zero

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 284

2.16.10 PCO_SetFlimImageProcessingFlow

Description Configure parameters of pco.flim specific internal image processing inside the camera. A PCO_-

ArmCamera command is required to update these settings.

Supported

camera type(s)

pco.flim

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetFlimImageProcessingFlow (

HANDLE ph, //in

WORD wAsymmetryCorrection, //in

WORD wCalculationMode, //in

WORD wReferencingMode, //in

WORD wThresholdLow, //in

WORD wThresholdHigh, //in

WORD wOutputMode, //in

WORD wReserved1, //in

WORD wReserved2, //in

WORD wReserved3, //in

WORD wReserved4 //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera

wAsymmetryCorrection WORD WORD variable to set the asymmetry correction

mode.

This parameter can be used to perform an asymmetry

correction of taps A and B due to dynamic

imbalances of their responsivities. This is done

by the computation of the arithmetic mean of

tap A and tap B, both carrying the same phase

information. To use that mode, the function PCO_-

SetFlimPhaseSequenceParameter has to be called

with the parameters wPhaseSymmetry = [twice],

wPhaseOrder = [opposite] and wTapSelect = [both]

with wPhaseNumber other than [manual shifting].

• 0x0001 = [average]: Asymmetry correction

mode using the arithmetic mean is enabled

• 0x0001 = [average]: Asymmetry correction

mode using the arithmetic mean is enabled.

wCalculationMode WORD Reserved for future use, set to zero

wReferencingMode WORD Reserved for future use, set to zero

wThresholdLow WORD Reserved for future use, set to zero

wThresholdHigh WORD Reserved for future use, set to zero

Continued on next page

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 285

Continued from previous page

Name Type Description

wOutputMode WORD WORD variable to set the output mode.

• 0x0001 = [multiply x2]

If this flag is set, the pixel values of the phase images

are multiplied by two to virtually reach saturation

earlier.

wReserved1 WORD Reserved for future use, set to zero

wReserved2 WORD Reserved for future use, set to zero

wReserved3 WORD Reserved for future use, set to zero

wReserved4 WORD Reserved for future use, set to zero

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

Example

• wPhaseNumber = [4 phases]

• wPhaseSymmetry = [twice]

• wPhaseOrder = [opposite]

• wTapSelect = [both]

• wAsymmetryCorrection = [average]

The resulting phase image sequence out of the camera is:

0° (mean tap A and B), 180° (mean tap A and B), 90° (mean tap A and B), 270° (mean tap A and

B)

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 286

2.16.11 Image sequences

wPhaseNumber wPhaseSymmetry wPhaseOrder wTapSelect wAsymmetryCorrection Length Resulting Sequence

[manual] don’t care don’t care [both] [off] 2 phi (A), phi+180° (B)

[manual] don’t care don’t care [tap A] [off] 1 phi (A)

[manual] don’t care don’t care [tap B] [off] 1 phi+180° (B)

[2 phases] [singular] don’t care [both] [off] 2 0° (A), 180° (B)

[2 phases] [singular] don’t care [tap A] [off] 1 0° (A)

[2 phases] [singular] don’t care [tap B] [off] 1 180° (B)

[2 phases] [twice] don’t care [both] [off] 4 0° (A), 180° (B), 180° (A), 0° (B)

[2 phases] [twice] don’t care [tap A] [off] 2 0° (A), 180° (A)

[2 phases] [twice] don’t care [tap B] [off] 2 180° (B), 0° (B)

[2 phases] [twice] [opposite] [both] [average] 2 0° (AB), 180° (AB)

[4 phases] [singular] don’t care [both] [off] 4 0° (A), 180° (B), 90° (A), 270° (B)

[4 phases] [singular] don’t care [tap A] [off] 2 0° (A), 90° (A)

[4 phases] [singular] don’t care [tap B] [off] 2 180° (B), 270° (B)

[4 phases] [twice] [ascending] [both] [off] 8 0° (A), 180° (B), 90° (A), 270° (B), 180° (A), 0° (B), 270° (A), 90° (B)

[4 phases] [twice] [ascending] [tap A] [off] 4 0° (A), 90° (A), 180° (A), 270° (A)

[4 phases] [twice] [ascending] [tap B] [off] 4 180° (B), 270° (B), 0° (B), 90° (B)

[4 phases] [twice] [opposite] [both] [off] 8 0° (A), 180° (B), 180° (A), 0° (B), 90° (A), 270° (B), 270° (A), 90° (B)

[4 phases] [twice] [opposite] [both] [average] 4 0° (AB), 180° (AB), 90° (AB), 270° (AB)

[4 phases] [twice] [opposite] [tap A] [off] 4 0° (A), 180° (A), 90° (A), 270° (A)

[4 phases] [twice] [opposite] [tap B] [off] 4 180° (B), 0° (B), 270° (B), 90° (B)

[8 phases] [singular] don’t care [both] [off] 8 0° (A), 180° (B), 45° (A), 225° (B), 90° (A), 270° (B), 135° (A), 315° (B)

[8 phases] [singular] don’t care [tap A] [off] 4 0° (A), 45° (A), 90° (A), 135° (A)

[8 phases] [singular] don’t care [tap B] [off] 4 180° (B), 225° (B), 270° (B), 315° (B)

[8 phases] [twice] [ascending] [both] [off] 16 0° (A), 180° (B), 45° (A), 225° (B), 90° (A), 270° (B), 135° (A), 315° (B),

180° (A), 0° (B), 225° (A), 45° (B), 270° (A), 90° (B), 315° (A), 135° (B)

[8 phases] [twice] [ascending] [tap A] [off] 8 0° (A), 45° (A), 90° (A), 135° (A), 180° (A), 225° (A), 270° (A), 315° (A)

[8 phases] [twice] [ascending] [tap B] [off] 8 180° (B), 225° (B), 270° (B), 315° (B), 0° (B), 45° (B), 90° (B), 135° (B)

[8 phases] [twice] [opposite] [both] [off] 16 0° (A), 180° (B), 180° (A), 0° (B), 45° (A), 225° (B), 225° (A), 45° (B),

90° (A), 270° (B), 270° (A), 90° (B), 135° (A), 315° (B), 315° (A), 135°

(B)

Continued on next page

p
c
o
.s
d
k

C
h
a
p
te
r
2

p
c
o
.s
d
k
u
s
e
r
m
a
n
u
a
l1.3

0
.0

2
8
7

Continued from previous page

wPhaseNumber wPhaseSymmetry wPhaseOrder wTapSelect wAsymmetryCorrection Length Resulting Sequence

[8 phases] [twice] [opposite] [both] [average] 8 0° (AB), 180° (AB), 45° (AB), 225° (AB), 90° (AB), 270° (AB), 135°

(AB), 315° (AB)

[8 phases] [twice] [opposite] [tap A] [off] 8 0° (A), 180° (A), 45° (A), 225° (A), 90° (A), 270° (A), 135° (A), 315° (A)

[8 phases] [twice] [opposite] [tap B] [off] 8 180° (B), 0° (B), 225° (B), 45° (B), 270° (B), 90° (B), 315° (B), 135° (B)

[16 phases] [singular] don’t care [both] [off] 16 0° (A), 180° (B), 22.5° (A), 202.5° (B), 45° (A), 225° (B), 67.5° (A),

247.5° (B), 90° (A), 270° (B), 112.5° (A), 292.5° (B), 135° (A), 315°

(B), 157.5° (A), 337.5° (B)

[16 phases] [singular] don’t care [tap A] [off] 8 0° (A), 22.5° (A), 45° (A), 67.5° (A), 90° (A), 112.5° (A), 135° (A), 157.5°

(A)

[16 phases] [singular] don’t care [tap B] [off] 8 180° (B), 202.5° (B), 225° (B), 247.5° (B), 270° (B), 292.5° (B), 315°

(B), 337.5° (B)

[16 phases] [twice] [ascending] [both] [off] 32 0° (A), 180° (B), 22.5° (A), 202.5° (B), 45° (A), 225° (B), 67.5° (A),

247.5° (B), 90° (A), 270° (B), 112.5° (A), 292.5° (B), 135° (A), 315°

(B), 157.5° (A), 337.5° (B), 180° (A), 0° (B), 202.5° (A), 22.5° (B), 225°

(A), 45° (B), 247.5° (A), 67.5° (B), 270° (A), 90° (B), 292.5° (A), 112.5°

(B), 315° (A), 135° (B), 337.5° (A), 157.5° (B)

[16 phases] [twice] [ascending] [tap A] [off] 16 0° (A), 22.5° (A), 45° (A), 67.5° (A), 90° (A), 112.5° (A), 135° (A), 157.5°

(A), 180° (A), 202.5° (A), 225° (A), 247.5° (A), 270° (A), 292.5° (A),

315° (A), 337.5° (A)

[16 phases] [twice] [ascending] [tap B] [off] 16 180° (B), 202.5° (B), 225° (B), 247.5° (B), 270° (B), 292.5° (B), 315°

(B), 337.5° (B), 0° (B), 22.5° (B), 45° (B), 67.5° (B), 90° (B), 112.5° (B),

135° (B), 157.5° (B)

[16 phases] [twice] [opposite] [both] [off] 32 0° (A), 180° (B), 180° (A), 0° (B), 22.5° (A), 202.5° (B), 202.5° (A),

22.5° (B), 45° (A), 225° (B), 225° (A), 45° (B), 67.5° (A), 247.5° (B),

247.5° (A), 67.5° (B), 90° (A), 270° (B), 270° (A), 90° (B), 112.5° (A),

292.5° (B), 292.5° (A), 112.5° (B), 135° (A), 315° (B), 315° (A), 135°

(B), 157.5° (A), 337.5° (B), 337.5° (A), 157.5° (B)

[16 phases] [twice] [opposite] [both] [average] 16 0° (AB), 180° (AB), 22.5° (AB), 202.5° (AB), 45° (AB), 225° (AB), 67.5°

(AB), 247.5° (AB), 90° (AB), 270° (AB), 112.5° (AB), 292.5° (AB), 135°

(AB), 315° (AB), 157.5° (AB), 337.5° (AB)

[16 phases] [twice] [opposite] [tap A] [off] 16 0° (A), 180° (A), 22.5° (A), 202.5° (A), 45° (A), 225° (A), 67.5° (A),

247.5° (A), 90° (A), 270° (A), 112.5° (A), 292.5° (A), 135° (A), 315°

(A), 157.5° (A), 337.5° (A)

[16 phases] [twice] [opposite] [tap B] [off] 16 180° (B), 0° (B), 202.5° (B), 22.5° (B), 225° (B), 45° (B), 247.5° (B),

67.5° (B), 270° (B), 90° (B), 292.5° (B), 112.5° (B), 315° (B), 135° (B),

337.5° (B), 157.5° (B)

p
c
o
.s
d
k

C
h
a
p
te
r
2

p
c
o
.s
d
k
u
s
e
r
m
a
n
u
a
l1.3

0
.0

2
8
8

2.17 Lens Control

The following section contains all function for controlling automatic adjustable lenses.

2.17.1 PCO_InitLensControl

Description Initializes a new lens control object when phLensControl is NULL and returns the handle to the

internal structures.

Also re-initializes an already existing lens control object when called with a valid phLensControl.

E.g. when the lens is changed in front of the Birger ring the lens functions will return an error as

there is no lens for a short time. To reinitialize the lens after re-plug, call PCO_InitLensControl

with a previously created and valid phLensControl. You can use a windows timer function in order

to call the init function till it returns without error. Processing can be continued normally after

successful re-initialization.

As the interface is a serial port the initialization takes some time.

It is mandatory to call PCO_CloseLensControl or PCO_CleanupLensControl during shutdown

of the application.

Supported

camera type(s)

pco.edge CLHS, pco.dimax CS, pco.dicam

Descriptor

dependency

dwGeneralCapsDESC1: GENERALCAPS1_USER_INTERFACE

Prototype
SC2_SDK_FUNC int WINAPI PCO_InitLensControl (

HANDLE ph, //in

HANDLE* phLensControl //in,out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera device

phLensControl HANDLE* Pointer to a PCO_LensControl Structure which holds all

necessary parameters. Set to NULL for a new handle or use

an already valid handle for re-initialization

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 289

Example Here’s a short code listing on how to deal with a lens control device (Camera already opened, no

error handling):

HANDLE hLensControl = NULL;

PCO_LensControl* phLensControl;

int err = PCO_InitLensControl(hCamera, (HANDLE*) &hLensControl);

// Initializes a lens control object

phLensControl = (PCO_LensControl*) hLensControl;

// Cast the stuct ptr to get access to the values

DWORD dwflagsin = 0, dwflagsout = 0;

DWORD dwAperturePos = phLensControl->pstrLensControlParameters->←↩
dwApertures[0];

// Gets the first F/n value

LONG lFocusPos = 0;

err = PCO_SetApertureF(phLensControl, &dwAperturePos, dwflagsin, &←↩
dwflagsout);

// Sets the aperture as F/n value

err = PCO_GetAperture(phLensConrtol, &dwAperturePos, &dwflagsout);

// Gets the aperture as index value

err = PCO_GetFocus(phLensControl, &lFocusPos, &dwflagsout);

// Gets the focus (0...0x3FFF)

err = PCO_SetFocus(phLensControl, &lFocusPos, dwflagsin, &dwflagsout)←↩
;

// Sets the focus

err = PCO_CloseLensControl(hLensControl);

// Closes the lens control object

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 290

2.17.1.1 PCO_LensControl Structure

Name Type Description

wSize WORD Size of this

structure

pstrUserInterfaceInfo PCO_UserInterfaceInfo* Internally used

structure

pstrUserInterfaceSettings PCO_UserInterfaceSettings* Internally used

structure

pstrLensControlParameters PCO_LensControlParameters* Internally used

structure

hCamera HANDLE Handle of attached

camera

2.17.1.2 PCO_LensControlParameters

Name Type Description

wSize WORD Size of this structure

wHardwareVersion WORD Hardware version queried by hv

wBootloaderVersion WORD Bootloader version queried by bv

wSerialNumber WORD Serial number queried by sn

bLibraryIdentity[48] BYTE Full library identity string queried by lv

dwLENSType DWORD This identifies the type of the lens control

(Birger=0x00B189E8)

dwStatusFlags DWORD LENSCONTROL_STATUS…

dwInitCounter DWORD Counts number of inits in order to reflect lens changes

F number queried by da

dwFNumberMinimum DWORD Min aperture as f/ *10

dwFNumberNumStops DWORD Number of stops

dwFNumberMaximum DWORD Max aperture as f/ *10

Zoom range queried by dz

dwZoomRangeMin DWORD Min zoom position

dwZoomRangeMax DWORD Max zoom position

dwZoomPos DWORD Not used, set to zero

dwLastZoomPos DWORD Last zoom position queried by gs

dwApertures[50] DWORD Possible aperture values in f/ * 10

dwFocalLength DWORD Last focal length got from lens by lc

lFocusMin LONG Focus range minimum; Usually 0

lFocusMax LONG Focus range maximum; Usually 16383

lFocusCurr LONG Focus position 0… 16383

lFocusLastCurr LONG Last current focus position

wAperturePos WORD Current aperture position

wLastAperturePos WORD Last current aperture position

Continued on next page

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 291

Continued from previous page

Name Type Description

dwfLastAperturePos DWORD Last aperture position as f/ * 10

2.17.1.3 DEFINES

Name Type Description

LENSCONTROL_LENSTYPE_NONE 0

LENSCONTROL_TYPE_BIRGER 0x00B189E8 Used for identification of LENS

type

LENSCONTROL_STATUS_LA_CMD_DONE 0x00000001 Indicates command la was

sent to lens

LENSCONTROL_STATUS_LENSPRESENT 0x00000002 Indicates presence of a lens

LENSCONTROL_STATUS_NOAPERTURE 0x00000004 No aperture settings are

possible

LENSCONTROL_STATUS_MANUALFOCUS 0x00000008 No focus settings are possible

LENSCONTROL_STATUS_WAITINGFORLENS 0x00000010 Birger is here, but no lens

LENSCONTROL_IN_LENSVALUE_RELATIVE 0x00001000 Set focus relative to current

position

LENSCONTROL_OUT_LENSHITSTOP 0x00100000 Focus movement hit a stop

position

LENSCONTROL_OUT_LENSWASCHANGED 0x00200000 Last focus or aperture

movement caused a change

LENSCONTROL_OUT_ZOOMHASCHANGED 0x00400000 Focal length of lens has

changed

2.17.2 PCO_CleanupLensControl

Description Cleans up all internal lens control objects, which were created. It closes and deletes all lens control

objects.

This is an internally used helper function, which is also exported.

Supported

camera type(s)

pco.edge CLHS, pco.dimax cs, pco.dicam

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_CleanupLensControl (

);

Parameter None

Return value

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 292

Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 293

2.17.3 PCO_CloseLensControl

Description Closes and deletes a lens control object. The handle will be invalid afterwards

Supported

camera type(s)

pco.edge CLHS, pco.dimax cs, pco.dicam

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_CloseLensControl (

HANDLE hLensControl //in

);

Parameter Name Type Description

hLensControl HANDLE Handle to a previously opened lens control object

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 294

2.17.4 PCO_GetLensFocus

Description Gets the current focus of the lens control device as value between 0...0x3FFF.

Supported

camera type(s)

pco.edge CLHS, pco.dimax cs, pco.dicam

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetLensFocus (

HANDLE hLens, //in

LONG* lFocusPos, //out

DWORD* dwflags //out

);

Parameter Name Type Description

hLens HANDLE Handle to a previously opened lens control object

lFocusPos LONG* Pointer to a long value to receive the current focus position

dwflags DWORD* Pointer to a DWORD value to receive status flags (LENSCONTROL_-

STATUS…)

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 295

2.17.5 PCO_SetLensFocus

Description Sets the focus of the lens control device to a new position. Value must be between 0...0x3FFF.

Supported

camera type(s)

pco.edge CLHS, pco.dimax cs, pco.dicam

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetLensFocus (

HANDLE hLens, //in

LONG* lFocusPos, //in

DWORD dwflagsin, //in

DWORD* dwflagsout //out

);

Parameter Name Type Description

hLens HANDLE Handle to a previously opened lens control object

lFocusPos LONG* Pointer to a long value to set the new and move the current focus

position

dwflagsin DWORD DWORD variable to control the function, set to zero to move to

absolute position. Set LENSCONTROL_IN_LENSVALUE_RELATIVE

to change the focus relative to the current position

dwflagsout DWORD* Pointer to a DWORD value to receive status flags;

LENSCONTROL_OUT_LENSWASCHANGED indicates that the focus

changed; LENSCONTROL_OUT_LENSHITSTOP indicates that a stop

was hit (either 0 or 0x3FFF)

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 296

2.17.6 PCO_GetAperture

Description Gets the current aperture position of the lens control device in steps. Valid range is from 0 ... max

steps (dwFNumberNumStops).

Supported

camera type(s)

pco.edge CLHS, pco.dimax cs, pco.dicam

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetAperture (

HANDLE hLens, //in

WORD* wAperturePos, //out

DWORD* dwflags //out

);

Parameter Name Type Description

hLens HANDLE Handle to a previously opened lens control object

wAperturePos WORD* Pointer to a WORD value to receive the current aperture position

dwflags DWORD* Pointer to a DWORD value to receive status flags

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 297

2.17.7 PCO_SetAperture

Description Sets the current aperture position of the lens control device in steps. Valid range is from 0...max

steps (dwFNumberNumStops).

Supported

camera type(s)

pco.edge CLHS, pco.dimax cs, pco.dicam

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetAperture (

HANDLE hLens, //in

WORD* wAperturePos, //in

DWORD dwflagsin, //in

DWORD* dwflagsout //out

);

Parameter Name Type Description

hLens HANDLE Handle to a previously opened lens control object

wAperturePos WORD* Pointer to a WORD value to set the new and receive the

current aperture position. Value set must be between 0 and

dwFNumberNumstops

dwflagsin DWORD DWORD variable to control the function. Set

to zero to move to absolute position. Set

LENSCONTROL_IN_LENSVALUE_RELATIVE to change the

aperture relative to the current position

dwflagsout DWORD* Pointer to a DWORD value to receive status flags.

LENSCONTROL_OUT_LENSWASCHANGED indicates that the

aperture changed.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 298

2.17.8 PCO_GetApertureF

Description Gets the current aperture position of the lens control device in f/position * 10 (member of dwApertures).

The value returned is one of the members of the current dwApertures array.

The dwApertures array is reinitialized in case the zoom changes and either PCO_GetApertureF

or PCO_SetApertureF are called.

Changes in zoom will be shown in dwflagsout as LENSCONTROL_OUT_ZOOMHASCHANGED.

Supported

camera type(s)

pco.edge CLHS, pco.dimax cs, pco.dicam

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetApertureF (

HANDLE hLens, //in

DWORD* dwfAperturePos, //out

WORD* wAperturePos, //out

DWORD* dwflags //out

);

Parameter Name Type Description

hLens HANDLE Handle to a previously opened lens control object

dwfAperturePos DWORD* Pointer to a DWORD value to receive the current aperture

position in f/x * 10 (e.g. f/5.4 -> 54)

wAperturePos WORD* Pointer to a WORD value to receive the current aperture

position; Can be NULL

dwflags DWORD* Pointer to a DWORD value to receive status flags:

LENSCONTROL_OUT_ZOOMHASCHANGED indicates that

the dwApertures array was changed due to zoom change

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 299

2.17.9 PCO_SetApertureF

Description Sets the current aperture position of the lens control device in f/position * 10 (member of dwApertures

)

Please select a member of the current dwApertures array.

The dwApertures array is reinitialized in case the zoom changes and either PCO_GetApertureF

or PCO_SetApertureF are called.

Change in zoom will be shown in dwflagsout as LENSCONTROL_OUT_ZOOMHASCHANGED.

Supported

camera type(s)

pco.edge CLHS, pco.dimax cs, pco.dicam

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetApertureF (

HANDLE hLens, //in

DWORD* dwfAperturePos, //in

DWORD dwflagsin, //in

DWORD* dwflagsout //out

);

Parameter Name Type Description

hLens HANDLE Handle to a previously opened lens control object

dwfAperturePos DWORD* Pointer to a DWORD value to receive the current aperture

position in f/x * 10 (e.g. f/5.4 -> 54)

dwflagsin DWORD Pointer to a WORD value to receive the current aperture position;

Can be NULL

dwflagsout DWORD* Pointer to a DWORD value to receive status flags:

• LENSCONTROL_OUT_ZOOMHASCHANGED indicates that

the dwApertures array was changed due to zoom change

• LENSCONTROL_OUT_LENSWASCHANGED indicates that

the aperture changed

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 300

2.17.10 PCO_SendBirgerCommand

Description Sends a telegram to a Birger ring device and returns the result in the PCO_Birger Structure.

Usually PCO_GetLensFocus / PCO_SetLensFocus and PCO_GetAperture / PCO_SetAperture

are enough. However if you need to send your own command to the Birger ring you can use this

function. This is an internally used helper function, which is also exported.

Supported

camera type(s)

pco.edge CLHS, pco.dimax cs, pco.dicam

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC int WINAPI PCO_SendBirgerCommand (

HANDLE hLens, //in

PCO_Birger* pstrBirger, //in

char* szcmd, //in

int inumdelim //in

);

Parameter Name Type Description

hLens HANDLE Handle to a previously opened lens control object

pstrBirger PCO_Birger* Pointer to a PCO_Birger Structure, which will get all

parameters for the corresponding command

szcmd char* Command string. See Birger manual for valid commands. 0

x0D is added internally, thus e.g. la is enough.

inumdelim int Number of delimiters to receive. Birger uses 0x0D for the

delimiter.

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

2.17.10.1 PCO_Birger Structure

Name Type Description

wCommand WORD Two bytes indicating the command sent

wResult WORD Reserved

wType WORD Tells about the valid data type in the union array whichmust be used to get

the values: 0: byte, use bArray[index < 128]; 1: word, use wArray

[index < 64]; 2: shorts, use sArray[index < 64]; 3: dwords,

use dwArray[index < 32]; 4: longs, use lArray[index < 32];

0xFFFF: no valid data

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 301

2.18 Special Commands pco.dicam

Safe use of image intensifier

Note LIGHT DAMAGES IMAGE INTENSIFIER

Too much light input during exposure time (gate=ON) lowers the lifetime of the image intensifier.

Be careful with all kinds of light sources, a few milliseconds can be enough to damage the image

intensifier irreversibly.

Working with Image Intensifiers: Safety Instructions

The camera contains a highly sensitive image intensifier. To avoid damages or loss of quality,

the camera should not be operated with too high light input. The photocathode’s lifetime and

its loss of sensitivity depend directly on the amount of light impinging on it during exposure

time. A few milliseconds or even microseconds of exposure time may be sufficient to damage

the photocathode if the light source is powerful enough. The photocathode is a few µm thin

layer of a photo sensitive material. It absorbs photons and in turn generates photoelectrons for

amplification in the Micro Channel Plate (MCP). In case the photoelectron generation rate is too

high due to intense light input, the photocathode might be eroded. In extreme cases the layer

completely wears off and there a black spot appears. The photocathode is now blind and there is

no remedy except replacing the complete image intensifier tube. Bright light sources, e.g. lamps

or daylight (for example while adjusting or focusing the camera) in a long exposure operation mode

can permanently damage the photocathode, even when a monitor does not show any picture (if,

for instance the Intensifier Voltage MCP-Gain is set to minimum).

Since the MCP is behind the photocathode, changing the MCP-Gain does not affect the load of the

photocathode. It is a wrong conclusion to assume lower MCP-Gain would save the photocathode

in an overexposed scene. The opposite is true.

Therefore for a safe camera operation we recommend to start with a nearly closed iris (high f-stop,

e. g. 22), short exposure time and maximum MCP-Gain value (Image Intensifier Voltage set to

maximum). If no image is visible to yield an image the exposure time may be carefully increased

or the iris opened step by step.

If the camera is not in use replace the cap in front of the lens or intensifier.

Operational Lifetime Values

Themanufacturer of the image intensifier tube specifies durability for continuous, non-gated operation

only:

The half-life of the image intensifier (time taken for a 50% decrease in sensitivity) is approximately

2000 hours at a light input of 1mlx. 10-times higher light input reduces the half-life to approximately

200 hours.

In the gated mode a linear correspondence of half-life and light input does not apply. In this case

substantially higher light inputs are allowed.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 302

2.18.1 PCO_GetIntensifiedGatingMode

Description Gets the gating mode.

Supported

camera type(s)

pco.dicam

Descriptor

dependency

dwGeneralCapsDESC1: GENERALCAPS1_ENHANCED_DESCRIPTOR_INTENSIFIED

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetIntensifiedGatingMode (

HANDLE ph, //in

WORD* wIntensifiedGatingMode, //out

WORD* wReserved //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera

wIntensifiedGatingMode WORD* Pointer to a WORD variable to receive the gating

mode

wReserved WORD* Pointer to a WORD variable for future use

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 303

2.18.2 PCO_SetIntensifiedGatingMode

Description Sets the gating mode.

Operating mode for the MCP part of the image intensifier, which controls the extinction ratio

contribution (shutter ratio) of the MCP.

Especially uv and blue light is blocked less effectively outside the selected exposure time of the

image intensifier. This light leakage can negatively influence the image acquisition!

To prevent this negative effect, the MCP Intensifier Voltage can be switched off outside the

photocathode exposure time window to increase the system overall extinction ratio.

• Off: MCP gating is disabled, Intensifier Voltage is continously on; no contribution of the

MCP to the overall extinction ratio. Maximum fps can only be achieved with MCP gating Off

• On: MCP gating is enabled; MCP Intensifier Voltage is switched off after the end of the

photocathode exposure and reactivated immediately after the sCMOS sensor readout is

done; additional contribution of the MCP to the overall extinction ratio. Reactivation of the

Intensifier Voltage takes an extra 4 ms; this mode slows down the maximum achievable

framerate.

Supported

camera type(s)

pco.dicam

Descriptor

dependency

dwGeneralCapsDESC1: GENERALCAPS1_ENHANCED_DESCRIPTOR_INTENSIFIED

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetIntensifiedGatingMode (

HANDLE ph, //in

WORD wIntensifiedGatingMode, //in

WORD wReserved //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera

wIntensifiedGatingMode WORD WORD variable to set the gating mode

wReserved WORD WORD variable for future use

Parameter

dependency

dwFlagsIntensifiedDESC

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 304

2.18.3 PCO_GetIntensifiedMCP

Description Gets the intensified camera setup.

Supported

camera type(s)

pco.dicam

Descriptor

dependency

dwGeneralCapsDESC1: GENERALCAPS1_ENHANCED_DESCRIPTOR_INTENSIFIED

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetIntensifiedMCP (

HANDLE ph, //in

WORD* wIntensifiedVoltage, //out

WORD* wReserved, //out

DWORD* dwIntensifiedPhosphorDecay_us, //out

DWORD* dwReserved1, //out

DWORD* dwReserved2 //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera

wIntensifiedVoltage WORD* Pointer to a WORD variable to receive the

voltage for the MCP

wReserved WORD* Pointer to a WORD variable for future use

dwIntensifiedPhosphorDecay_us DWORD* Pointer to a DWORD variable to receive

the phosphor decay time in [us]

dwReserved1 DWORD* Pointer to a DWORD variable for future

use

dwReserved2 DWORD* Pointer to a DWORD variable for future

use

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 305

2.18.4 PCO_SetIntensifiedMCP

Description Sets the intensified camera setup.

Select the amount of the MCP-Gain of the image intensifier. Adjustable is the voltage applied to

the MCP (micro channel plate) in the range of 750 V to 1100 V for S20 image intensifiers and 750 V

to 900 V for GaAs(P) intensifiers. The other two intensifier voltages for photocathode and phosphor

screen are fixed. Note that there is no linear correspondence between the MCP voltage and the

amount of Gain. The Gain is exponential and typically doubles every 50 V.

Note: start with maximum Intensifier Voltage, closed aperture and very short exposure times at

each experimental setup to protect the image intensifier

Supported

camera type(s)

pco.dicam

Descriptor

dependency

dwGeneralCapsDESC1: GENERALCAPS1_ENHANCED_DESCRIPTOR_INTENSIFIED

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetIntensifiedMCP (

HANDLE ph, //in

WORD wIntensifiedVoltage, //in

WORD wFlags, //in

WORD wReserved, //in

DWORD dwIntensifiedPhosphorDecay_us, //in

DWORD dwReserved1, //in

DWORD dwReserved2 //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera

wIntensifiedVoltage WORD WORD variable to set the voltage for the

MCP

wFlags WORD WORD variable for future use (must be set

to zero)

wReserved WORD WORD variable for future use

dwIntensifiedPhosphorDecay_us DWORD DWORD variable to set the phosphor

decay time in [us]

dwReserved1 DWORD DWORD variable for future use

dwReserved2 DWORD DWORD variable for future use

Parameter

dependency

wMinVoltageIntensifiedDESC, wMaxVoltageIntensifiedDESC,

wVoltageStepIntensifiedDESC, dwMinPhosphorDecayIntensified_ns_DESC,

dwMaxPhosporDecayIntensified_ms_DESC

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 306

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

2.18.5 PCO_GetIntensifiedLoopCount

Description Gets intensified camera loop count.

Supported

camera type(s)

pco.dicam

Descriptor

dependency

dwGeneralCapsDESC1: GENERALCAPS1_ENHANCED_DESCRIPTOR_INTENSIFIED

Prototype
SC2_SDK_FUNC int WINAPI PCO_GetIntensifiedLoopCount (

HANDLE ph, //in

WORD* wIntensifiedLoopCount, //out

WORD* wReserved //out

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera

wIntensifiedLoopCount WORD* Pointer to a WORD variable to receive the loop

counter

wReserved WORD* Pointer to a WORD variable for future use (can be

NULL)

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 307

2.18.6 PCO_SetIntensifiedLoopCount

Description Sets intensified camera loop count.

Supported

camera type(s)

pco.dicam

Descriptor

dependency

dwGeneralCapsDESC1: GENERALCAPS1_ENHANCED_DESCRIPTOR_INTENSIFIED

Prototype
SC2_SDK_FUNC int WINAPI PCO_SetIntensifiedLoopCount (

HANDLE ph, //in

WORD wIntensifiedLoopCount, //in

WORD wReserved //in

);

Parameter Name Type Description

ph HANDLE Handle to a previously opened camera

wIntensifiedLoopCount WORD WORD variable to set the loop counter

wReserved WORD WORD variable for future use (can be NULL)

Parameter

dependency

wMaxLoopCountIntensifiedDESC

Return value Name Type Description

ErrorMessage int 0 in case of success, errorcode otherwise,

see chapter Error/Warning Codes.

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 308

2.18.7 PCO_Description_Intensified

Name Type Description

wCode WORD Telegram code

wSize WORD Sizeof this struct

wChannelNumberIntensifiedDESC WORD 0: master channel, 1...x: slave

channels

wNumberOfChannelsIntensifiedDESC WORD Number of active channels in

this camera

wMinVoltageIntensifiedDESC WORD Min voltage for MCP, usually

700V (GaAs, 600V)

wMaxVoltageIntensifiedDESC WORD Max voltage for MCP, usually

1100V (GaAs, 900V)

wVoltageStepIntensifiedDESC WORD Voltage step for MCP, usually

10V

wExtendedMinVoltageIntensifiedDESC WORD Extended min voltage for MCP,

600V (GaAs, 500V)

wMaxLoopCountIntensifiedDESC WORD Maximum loop count for multi

exposure

dwMinPhosphorDecayIntensified_ns_DESC DWORD Minimum decay time in (ns)

dwMaxPhosporDecayIntensified_ms_DESC DWORD Maximum decay time in (ms)

dwFlagsIntensifiedDESC DWORD General flags, gating modes

supported: 0x0001: Gating

mode 1 (switch off MCP after

and till next exposure) 0x0002:

Gating mode 2 (switch off MCP

and on when a trigger signal is

detected)

szIntensifierTypeDESC[24] char Type of image intensifier;

dwMCP_RectangleXL_DESC DWORD Rectangle of the MCP circle

area, x left

dwMCP_RectangleXR_DESC DWORD Rectangle of the MCP circle

area, x right

dwMCP_RectangleYT_DESC DWORD Rectangle of the MCP circle

area, y top

dwMCP_RectangleYB_DESC DWORD Rectangle of the MCP circle

area, y bottom

dwReserved[7] DWORD

bCks BYTE

Note dwMCP_Rectangle??_DESC describes the position of the rectangle including theMCP circle area

referenced to the sensor format which is greater. Note that the data in 1/100 pixel resolution, thus

you have to divide the values by 100 to get the pixel coordinate. If data is not valid, all values are

0x80000000!

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 309

pco.sdk Chapter 2

pco.sdk user manual 1.30.0 310

3 Image Area Selection (ROI)

In addition to common settings like exposure time and trigger modes the PCO cameras offer a

wide range of parameter settings to adapt the camera best for the requirements of the application.

One of the main features is that an image readout area can be set, which does reduce the amount

of data which must be handled from the interface and the application and therefore does increase

the usable frame rate.

Because the image readout area can be set in different ways and some parameters interact with

others and all depend on camera constraints the following overview does show what must be

considered to get the correct settings.

Because the camera constraints differ from model to model, the exact description can be loaded

from the camera withPCO_GetCameraDescription to thePCO_Description Structure structure.

All listed parameters can be found in this structure.

1/1

x1/y1
hmax /vmax

ROI

Image sensor area

x0/y0

First of all the image sensor area is defined through the imaging

sensor itself and its area of effective pixel rows and columns. Most

of the sensors have additional lines and/or rows with dark reference

and dummy pixels. Two different formats can be selected with the

function PCO_SetSensorFormat. Format [standard] does use all

effective pixels. Format [extended] can either define full sensor with

the additional dark pixels or a smaller region of the sensor for

cameras which don’t support ROI settings otherwise.

The size of the active image area in format [standard] is defined through parameters

wMaxHorzResStdDESC and wMaxVertResStdDESC in PCO_Description Structure. The size of

the active image area in format [extended] is defined through parameters wMaxHorzResExtDESC

and wMaxVertResExtDESC in PCO_Description Structure.

Setting a binning value PCO_SetBinning does reduce the active image area by the factor of the

binning. In example: setting binning 2x2 for a sensor with standard resolution 1600x1200 will result

in an active image area of 800x600. Possible binning values in horizontal and vertical direction are

specified through parameters wMaxBinHorzDESC, wBinHorzSteppingDESC, wMaxBinVertDESC

, wBinVertSteppingDESC.

WithPCO_SetROI a ROI (Region of interest) can be selected out of this active image area. Minimum

limits for the ROI settings are defined through parameters wMinSizeHorzDESC and

wMinSizeVertDESC. The maximum limits are predetermined through the active sensor area,

which depend on the settings of format and binning. Additional restrictions exist see CAMERA

CONSTRAINTS

If SoftROI (PCO_EnableSoftROI, only available for Camera Link mE IV interface) is disabled or

not available several restrictions of the camera must be respected to find accurate ROI settings. If

SoftROI is enabled any value inside the active image area can be given for the ROI setting. But the

ROI setting does not influence the frame rate in any case, because the restrictions on the camera

remain. The function will set the camera ROI best possible, but some overhead may occur.

Valid values for the ROI setting of the first top-left pixel are from 1 up to limit–stepping + 1. Valid
values for the ROI setting of the last bottom right pixel are from 1 + stepping up to limit.

Wrong settings do not produce an error immediately, but the next PCO_ArmCamera will not

succeed, because ROI settingswill be validated from the camera in this command. After a successful

Arm additional actions must be done.

• PCO_SetImageParameters must be called. This is mandatory for cameras with Camera

Link, CLHS and GigE interface and recommended for all others.

pco.sdk Chapter 3

pco.sdk user manual 1.30.0 311

• For pco.edge 5.5 cameras with Camera Link interface running in Rolling Shutter mode PCO_-

SetTransferParameter and PCO_SetActiveLookupTable must be called, followed by an

additional PCO_ArmCamera call. For all other cameras PCO_SetTransferParameter is

optional.

• Sizes of previous allocated buffers must be changed.

3.1 Camera Constraints

No ROI allowed If parameter value wRoiHorStepsDESC and wRoiVertStepsDESC are zero

Symetrical

requirements • According to the flags ROI_VERT_SYMM_TO_HORZ_AXIS and

ROI_VERT_SYMM_TO_VERT_AXIS in parameter dwGeneralCapsDESC1.

• For dual ADC mode the horizontal ROI must be symmetrical

• For a pco.dimax the horizontal and vertical ROI must be symmetrical

• For a pco.edge the vertical ROI must be symmetrical

(despite in readout mode SCCMOS_FORMAT_TOP_BOTTOM)

Stepping

requirement

According to the parameters wRoiHorStepsDESC and wRoiVertStepsDESC

Note For pco.edge 4.2 with Camera Link interface

The image sensor area of the SCMOS sensor is 2048x2048, but the transmission over the Camera

Link interface does only allow a horizontal stepping of 20 pixels. So without SoftROI the Region of

interest can be set to either 2060 (does include 12 dark pixels) or 2040 or below getting not the full

effective pixel area. When SoftRoi is selected a horizontal ROI of 2048 pixels can be set to ensure

that the grabbed image does only consist of effective pixels.

pco.sdk Chapter 3

pco.sdk user manual 1.30.0 312

4 Typical Implementation

4.1 Basic Handling

This typical step by step implementation shows the basic handling:

1. Declarations:

PCO_General strGeneral;

PCO_CameraType strCamType;

PCO_Sensor strSensor;

PCO_Description strDescription;

PCO_Timing strTiming;

PCO_Storage strStorage;

PCO_Recording strRecording;

2. Set all buffer ’size’ parameters to the expected values:

strGeneral.wSize = sizeof(strGeneral);

strGeneral.strCamType.wSize = sizeof(strGeneral.strCamType);

strCamType.wSize = sizeof(strCamType);

strSensor.wSize = sizeof(strSensor);

strSensor.strDescription.wSize = sizeof(strSensor.strDescription←↩
);

strSensor.strDescription2.wSize = sizeof(strSensor.←↩
strDescription2);

strDescription.wSize = sizeof(strDescription);

strDescription2.wSize = sizeof(strDescription2);

strTiming.wSize = sizeof(strTiming);

strStorage.wSize = sizeof(strStorage);

strRecording.wSize = sizeof(strRecording);

3. Open the camera and fill the structures:

PCO_OpenCamera(&hCam, iBoardNumber);

PCO_GetGeneral(hCam, &strGeneral);

PCO_GetCameraType(hCam, &strCamType);

PCO_GetSensorStruct(hCam, &strSensor);

PCO_GetCameraDescription(hCam, &strDescription);

PCO_GetTimingStruct(hCam,&strTiming);

PCO_GetRecordingStruct(hCam, &strRecording);

4. Set camera settings (exposure, modes, etc.) and sizes (binning, ROI, etc.)

5. Arm the camera

PCO_ArmCamera(hCam);

PCO_GetCameraHealthStatus(hCam, &dwWarn, &dwError, &dwStatus);

pco.sdk Chapter 4

pco.sdk user manual 1.30.0 313

6. Get the current sizes and allocate one or more buffer:

PCO_GetSizes(hCam, &actsizex, &actsizey, &ccdsizex, &ccdsizey)

PCO_AllocateBuffer(hCam, &bufferNr, actsizex * actsizey * ←↩
sizeof(WORD), &data, &hEvent)

PCO_SetImageParameters(actsizex, actsizey ,←↩
IMAGEPARAMETERS_READ_WHILE_RECORDING,NULL,0);

Mandatory for Camera Link,CLHS and GigE interface for others recommended.

7. Set the recording state to ’Recording’ and add the allocated buffer(s):

PCO_SetRecordingState(hCam, 0x0001);

PCO_AddBufferEx(hCam, 0, 0, bufferNr, actualsizex, actualsizey, ←↩
bitres);

8. Access the image data through the pointer returned from AllocateBuffer:

• Call WaitForSingleObject/ WaitforMultipleObjects or poll the buffer status.

• Do a convert and show the image.

• Call ResetEvent for a manual reset event before doing an AddBuffer.

9. Stop the camera

PCO_CancelImages(hCam);

PCO_SetRecordingState(hCam, 0x0000);

10. If internal camera memory (CamRAM) is available images can be readout from the

camera:

PCO_GetNumberOfImagesInSegment(hCam, wActSeg, &dwValidImageCnt, ←↩
&dwMaxImageCnt);

PCO_GetImageEx(hCam, wActSeg, dw1stImage, dwLastImage, bufferNr,←↩
actualsizex, actualsizey, bitres);

11. Free allocated buffers and close the camera.

PCO_FreeBuffer(hCamera, sBufNr);

PCO_CloseCamera(hCamera);

4.1.1 Short Code Discussion

PCO_SetRecordingState: enables recording of images, depending on the trigger mode. If trigger

mode is 0 (auto) and acquire mode is 0 (auto) images are transferred automatically to the camera

ram.

PCO_AddBufferEx: moves a buffer to the driver queue (set firstimage=lastimage=0 while record

is on), in order to transfer the most recent recorded image to the pc. At least two buffers must be

used to transfer images with maximum possible performance (depending on the interface).

PCO_GetBufferStatus: gives further information about success or error states.

pco.sdk Chapter 4

pco.sdk user manual 1.30.0 314

WaitForMultipleObjects (Windows function): waits until one or multiple buffer event handles are

in a signaled state. If waiting was successful and the buffer state shows successful transfer, the

data in the buffer can be used in other processing functions. After processing is finished, the buffer

can be added again to the driver queue.

PCO_CancelImages: must be called to remove all pending buffers from the driver queue. It also

does clear resources in the driver and camera, to get a clean state for further image transfers.

PCO_SetRecordingState: to zero stops recording. The image sensor inside the camera is read

out completely and set to idle

Some pitfalls:

• wSize is not set. Do not forget to set all wSize parameters

• Segment index is zero: The segment parameter is 1 based, whereas all structure reflections

are zero based, e.g. dwRamSegSize[0] is the size of segment 1

• The user calls PCO_GetImageEx with dw1stImage number 0. If the user wants to access

the first image inside the camera, set the image parameter to 1. Access to the camera is 1

based!

• The minimum segment size has to be at least two images

pco.sdk Chapter 4

pco.sdk user manual 1.30.0 315

4.2 Example ’Get single images from running camera’

#include "pco_err.h"

#include "sc2_SDKStructures.h"

#include "SC2_SDKAddendum.h"

#include "SC2_CamExport.h"

#include "SC2_Defs.h"

#ifdef _FILEFUNCTION_

char file_name[50];

#include "../file12.h"

#include "../file12.cpp"

#endif

void print_transferpar(HANDLE cam);

int main(int argc, char* argv[])

{

int iRet;

HANDLE cam;

HANDLE BufEvent;

short BufNum;

WORD *BufAdr;

PCO_Description strDescription;

WORD RecordingState;

printf("Get Handle to connected camera\n");

iRet = PCO_OpenCamera(&cam, 0);

if(iRet != PCO_NOERROR)

{

printf("No camera found\n");

printf("Press <Enter> to end\n");

iRet = getchar();

return -1;

}

strDescription.wSize=sizeof(PCO_Description);

iRet = PCO_GetCameraDescription(cam,&strDescription);

iRet = PCO_GetRecordingState(cam, &RecordingState);

if(RecordingState)

{

iRet = PCO_SetRecordingState(cam, 0);

}

//set camera to default state

iRet = PCO_ResetSettingsToDefault(cam);

#ifdef _FILEFUNCTION_

iRet = PCO_SetTimestampMode(cam,TIMESTAMP_MODE_BINARYANDASCII);

#endif

pco.sdk Chapter 4

pco.sdk user manual 1.30.0 316

iRet = PCO_ArmCamera(cam);

DWORD CameraWarning, CameraError, CameraStatus;

iRet = PCO_GetCameraHealthStatus(cam, &CameraWarning, &CameraError,←↩
&CameraStatus);

if(CameraError!=0)

{

printf("Camera has ErrorStatus\n");

printf("Press <Enter> to end\n");

iRet = getchar();

iRet = PCO_CloseCamera(cam);

return -1;

}

print_transferpar(cam);

WORD XResAct, YResAct, XResMax, YResMax;

DWORD bufsize;

iRet = PCO_GetSizes(cam, &XResAct, &YResAct, &XResMax, &YResMax);

bufsize=XResAct*YResAct*sizeof(WORD);

BufEvent = NULL;

BufNum = -1;

BufAdr=NULL;

iRet = PCO_AllocateBuffer(cam, &BufNum, bufsize, &BufAdr, &BufEvent←↩
);

iRet = PCO_SetImageParameters(cam,XResAct,YResAct,←↩
IMAGEPARAMETERS_READ_WHILE_RECORDING,NULL,0);

printf("Start camera\n");

iRet = PCO_SetRecordingState(cam, 1);

printf("Grab single images from running camera\n");

for(int i=1;i<=10;i++)

{

printf("%02d. image ",i);

iRet = PCO_GetImageEx(cam, 1, 0, 0, BufNum, XResAct, YResAct, 16);

if (iRet != PCO_NOERROR)

{

printf("failed \n");

break;

}

else

printf("done ");

#ifdef _FILEFUNCTION_

sprintf(file_name,"image_%02d.tif",i);

store_tiff(file_name, XResAct, YResAct, 0, BufAdr);

printf("and stored to %s",file_name);

#endif

printf("\n");

}

pco.sdk Chapter 4

pco.sdk user manual 1.30.0 317

printf("Stop camera and close connection\n");

iRet = PCO_SetRecordingState(cam, 0);

iRet = PCO_FreeBuffer(cam, BufNum);

iRet = PCO_CloseCamera(cam);

printf("Press <Enter> to end\n");

iRet = getchar();

return 0;

}

void print_transferpar(HANDLE cam)

{

PCO_CameraType strCamType;

DWORD iRet;

strCamType.wSize=sizeof(PCO_CameraType);

iRet = PCO_GetCameraType(cam,&strCamType);

if(iRet!=PCO_NOERROR)

{

printf("PCO_GetCameraType failed with errorcode 0x%x\n",iRet);

return;

}

if(strCamType.wInterfaceType==INTERFACE_CAMERA LINK)

{

PCO_SC2_CL_TRANSFER_PARAM cl_par;

iRet = PCO_GetTransferParameter(cam,(void*)&cl_par,sizeof(←↩
PCO_SC2_CL_TRANSFER_PARAM));

printf("Camlink Settings:\nBaudrate: %u\nClockfreq: %u\n",

cl_par.baudrate,cl_par.ClockFrequency);

printf("Dataformat: %u 0x%x\nTransmit: %u\n",cl_par.←↩
DataFormat,cl_par.DataFormat,cl_par.Transmit);

}

}

pco.sdk Chapter 4

pco.sdk user manual 1.30.0 318

4.3 Example ’Get single images from camera recorder’

#include "pco_err.h"

#include "sc2_SDKStructures.h"

#include "SC2_SDKAddendum.h"

#include "SC2_CamExport.h"

#include "SC2_Defs.h"

#ifdef _FILEFUNCTION_

char filename[50];

#include "../file12.h"

#include "../file12.cpp"

#endif

void print_transferpar(HANDLE cam);

int main(int argc, char* argv[])

{

int iRet;

HANDLE cam;

HANDLE BufEvent;

short BufNum;

WORD *BufAdr;

PCO_Description strDescription;

WORD RecordingState;

printf("Get Handle to connected camera\n");

iRet = PCO_OpenCamera(&cam, 0);

if (iRet != PCO_NOERROR)

{

printf("No camera found\n");

printf("Press <Enter> to end\n");

iRet = getchar();

return -1;

}

strDescription.wSize=sizeof(PCO_Description);

iRet = PCO_GetCameraDescription(cam,&strDescription);

//check if camera has internal Recorder (CamRam)

if(strDescription.dwGeneralCapsDESC1&GENERALCAPS1_NO_RECORDER)

{

printf("Camera found, but no recorder available\n");

printf("Press <Enter> to end\n");

iRet = getchar();

iRet = PCO_CloseCamera(cam);

return -1;

}

iRet = PCO_GetRecordingState(cam, &RecordingState);

if(RecordingState)

iRet = PCO_SetRecordingState(cam, 0);

pco.sdk Chapter 4

pco.sdk user manual 1.30.0 319

//set camera to default state

iRet = PCO_ResetSettingsToDefault(cam);

#ifdef _FILEFUNCTION_

iRet = PCO_SetTimestampMode(cam,TIMESTAMP_MODE_BINARYANDASCII);

#endif

iRet = PCO_ArmCamera(cam);

DWORD CameraWarning, CameraError, CameraStatus;

iRet = PCO_GetCameraHealthStatus(cam, &CameraWarning, &CameraError,←↩
&CameraStatus);

if(CameraError!=0)

{

printf("Camera has ErrorStatus\n");

printf("Press <Enter> to end\n");

iRet = getchar();

iRet = PCO_CloseCamera(cam);

return -1;

}

print_transferpar(cam);

printf("Start and after some time stop camera\n");

iRet = PCO_SetRecordingState(cam, 1);

//wait while camera is recording

Sleep(500);

iRet = PCO_SetRecordingState(cam, 0);

DWORD ValidImageCnt, MaxImageCnt;

WORD Segment=1; //this is the default segment

iRet = PCO_GetNumberOfImagesInSegment(cam, Segment, &ValidImageCnt,←↩
&MaxImageCnt);

if(ValidImageCnt >= 1)

{

WORD XResAct, YResAct, XBin, YBin;

WORD RoiX0, RoiY0, RoiX1, RoiY1;

iRet = PCO_GetSegmentImageSettings(cam,Segment, &XResAct, &←↩
YResAct,

&XBin, &YBin, &RoiX0, &RoiY0, &RoiX1, &RoiY1);

BufEvent = NULL;

BufNum = -1;

BufAdr = NULL;

DWORD bufsize = XResAct*YResAct*sizeof(WORD);

iRet = PCO_AllocateBuffer(cam, &BufNum, bufsize, &BufAdr, &←↩
BufEvent);

iRet = PCO_SetImageParameters(cam, XResAct, YResAct,←↩
IMAGEPARAMETERS_READ_FROM_SEGMENTS,NULL,0);

printf("Grab recorded images from camera current valid %d\n",←↩
ValidImageCnt);

for(DWORD i=1;i<=10;i++)

pco.sdk Chapter 4

pco.sdk user manual 1.30.0 320

{

printf("%02d. image ",i);

if(ValidImageCnt < i)

{

printf("not available \n");

break;

}

iRet = PCO_GetImageEx(cam, Segment, i, i, BufNum, XResAct, ←↩
YResAct, 16);

if (iRet != PCO_NOERROR)

{

printf("failed \n");

break;

}

else

printf("done ");

#ifdef _FILEFUNCTION_

sprintf(filename,"rec_image_%02d.tif",i);

store_tiff(filename, XResAct, YResAct, 0, BufAdr);

printf("and stored to %s",filename);

#endif

printf("\n");

}

iRet = PCO_FreeBuffer(cam, BufNum);

}

iRet = PCO_CloseCamera(cam);

printf("Press <Enter> to end\n");

iRet = getchar();

return 0;

}

pco.sdk Chapter 4

pco.sdk user manual 1.30.0 321

4.4 Example ’Get multiple images from running camera’

#include "pco_err.h"

#include "SC2_SDKStructures.h"

#include "SC2_SDKAddendum.h"

#include "SC2_CamExport.h"

#include "SC2_Defs.h"

#ifdef _FILEFUNCTION_

char filename[50];

#include "../file12.h"

#include "../file12.cpp"

#endif

void print_transferpar(HANDLE cam);

#define BUFNUM 4

int main(int argc, char* argv[])

{

int iRet;

HANDLE cam;

HANDLE BufEvent[BUFNUM];

short BufNum[BUFNUM];

WORD *BufAdr[BUFNUM];

PCO_Description strDescription;

WORD RecordingState;

DWORD waitstat;

printf("Get Handle to connected camera\n");

iRet = PCO_OpenCamera(&cam, 0);

if (iRet != PCO_NOERROR)

{

printf("No camera found\n");

printf("Press <Enter> to end\n");

iRet = getchar();

return -1;

}

strDescription.wSize=sizeof(PCO_Description);

iRet = PCO_GetCameraDescription(cam,&strDescription);

iRet = PCO_GetRecordingState(cam, &RecordingState);

if(RecordingState)

{

iRet = PCO_SetRecordingState(cam, 0);

}

//set camera to default state

iRet = PCO_ResetSettingsToDefault(cam);

#ifdef _FILEFUNCTION_

pco.sdk Chapter 4

pco.sdk user manual 1.30.0 322

iRet = PCO_SetTimestampMode(cam,TIMESTAMP_MODE_BINARYANDASCII);

#endif

iRet = PCO_ArmCamera(cam);

DWORD CameraWarning, CameraError, CameraStatus;

iRet = PCO_GetCameraHealthStatus(cam, &CameraWarning, &CameraError,←↩
&CameraStatus);

if(CameraError!=0)

{

printf("Camera has ErrorStatus\n");

printf("Press <Enter> to end\n");

iRet = getchar();

iRet = PCO_CloseCamera(cam);

return -1;

}

print_transferpar(cam);

WORD XResAct, YResAct, XResMax, YResMax;

DWORD bufsize,StatusDLL,StatusDrv;

iRet = PCO_GetSizes(cam, &XResAct, &YResAct, &XResMax, &YResMax);

bufsize=XResAct*YResAct*sizeof(WORD);

for(int b=0;b<BUFNUM;b++)

{

BufEvent[b] = NULL;

BufNum[b] = -1;

BufAdr[b]=NULL;

}

for(int b=0;b<BUFNUM;b++)

{

iRet = PCO_AllocateBuffer(cam, &BufNum[b], bufsize, &BufAdr[b], &←↩
BufEvent[b]);

}

iRet = PCO_SetImageParameters(cam, XResAct, YResAct,←↩
IMAGEPARAMETERS_READ_WHILE_RECORDING,NULL,0);

printf("Start camera\n");

iRet = PCO_SetRecordingState(cam, 1);

for(int b=0;b<BUFNUM;b++)

{

iRet = PCO_AddBufferEx(cam,0,0, BufNum[b], XResAct, YResAct, 16);

}

int test,next,multi;

test=next=multi=0;

printf("Grab images from running camera\n");

for(int i=1;i<=10;i++)

{

multi=0;

pco.sdk Chapter 4

pco.sdk user manual 1.30.0 323

printf("%02d. image wait ",i);

waitstat=WaitForMultipleObjects(BUFNUM,BufEvent,FALSE,1000);

if(waitstat==WAIT_TIMEOUT)

{

printf("failed\n");

break;

}

// WaitForMultipleObjects might return with 2 or more events set,

// so all buffers must be checked

// 'test' and 'next' help to start check at last successful buffer

// 'multi' counts the number of buffers, which have their event set

test=next;

for(int b=0;b<BUFNUM;b++)

{

waitstat=WaitForSingleObject(BufEvent[test],0);

if(waitstat==WAIT_OBJECT_0)

{

multi++;

ResetEvent(BufEvent[test]);

iRet = PCO_GetBufferStatus(cam,BufNum[test],&StatusDLL,&←↩
StatusDrv);

//!!! IMPORTANT StatusDrv must always be checked for errors

if(StatusDrv==PCO_NOERROR)

{

printf(" done buf%02d status 0x%08x ",test,StatusDrv);

if(multi>1)

printf("multi %02d ",multi);

}

else

{

printf("buf%02d error status 0x%08x m %02d ",test,StatusDrv←↩
,multi);

break;

}

// calculations on the image data can be done here, but calculation ←↩
time must not exceed

// frametime of camera else images are lost

#ifdef _FILEFUNCTION_

sprintf(filename,"add_image_%02d.tif",i);

store_tiff(filename, XResAct, YResAct, 0, BufAdr[test]);

printf("and stored to %s",filename);

#endif

iRet = PCO_AddBufferEx(cam,0,0, BufNum[test], XResAct, ←↩
YResAct, 16);

}

else

break;

test++;

if(test>=BUFNUM)

test=0;

printf("\n");

pco.sdk Chapter 4

pco.sdk user manual 1.30.0 324

}

next=test;

fflush(stdout);

}//end for imacount

//!!! IMPORTANT PCO_CancelImages must always be called, after ←↩
PCO_AddBuffer...() loops

iRet = PCO_CancelImages(cam);

printf("Stop camera and close connection\n");

iRet = PCO_SetRecordingState(cam, 0);

for(int b=0;b<BUFNUM;b++)

iRet = PCO_FreeBuffer(cam, BufNum[b]);

iRet = PCO_CloseCamera(cam);

printf("Press <Enter> to end\n");

iRet = getchar();

return 0;

}

void print_transferpar(HANDLE cam)

{

PCO_CameraType strCamType;

DWORD iRet;

strCamType.wSize=sizeof(PCO_CameraType);

iRet = PCO_GetCameraType(cam,&strCamType);

if(iRet!=PCO_NOERROR)

{

printf("PCO_GetCameraType failed with errorcode 0x%x\n",iRet);

return;

}

if(strCamType.wInterfaceType==INTERFACE_CAMERA LINK)

{

PCO_SC2_CL_TRANSFER_PARAM cl_par;

iRet = PCO_GetTransferParameter(cam,(void*)&cl_par,sizeof(←↩
PCO_SC2_CL_TRANSFER_PARAM));

printf("Camlink Settings:\nBaudrate: %u\nClockfreq: %u\n",←↩
cl_par.baudrate,cl_par.ClockFrequency);

printf("Dataformat: %u 0x%x\nTransmit: %u\n",cl_par.←↩
DataFormat,cl_par.DataFormat,cl_par.Transmit);

}

}

pco.sdk Chapter 4

pco.sdk user manual 1.30.0 325

4.5 Example ’Get multiple images from camera recorder’

#include "pco_err.h"

#include "sc2_SDKStructures.h"

#include "SC2_SDKAddendum.h"

#include "SC2_CamExport.h"

#include "SC2_Defs.h"

#ifdef _FILEFUNCTION_

char filename[50];

#include "../file12.h"

#include "../file12.cpp"

#endif

void print_transferpar(HANDLE cam);

#define BUFNUM 4

int main(int argc, char* argv[])

{

int iRet;

HANDLE cam;

HANDLE BufEvent[BUFNUM];

short BufNum[BUFNUM];

WORD *BufAdr[BUFNUM];

PCO_Description strDescription;

WORD RecordingState;

DWORD waitstat;

printf("Get Handle to connected camera\n");

iRet = PCO_OpenCamera(&cam, 0);

if (iRet != PCO_NOERROR)

{

printf("No camera found\n");

printf("Press <Enter> to end\n");

iRet = getchar();

return -1;

}

strDescription.wSize=sizeof(PCO_Description);

iRet = PCO_GetCameraDescription(cam,&strDescription);

if(strDescription.dwGeneralCapsDESC1&GENERALCAPS1_NO_RECORDER)

{

printf("Camera found, but no recorder available\n");

printf("Press <Enter> to end\n");

iRet = getchar();

iRet = PCO_CloseCamera(cam);

return -1;

}

pco.sdk Chapter 4

pco.sdk user manual 1.30.0 326

iRet = PCO_GetRecordingState(cam, &RecordingState);

if(RecordingState)

iRet = PCO_SetRecordingState(cam, 0);

//set camera to default state

iRet = PCO_ResetSettingsToDefault(cam);

#ifdef _FILEFUNCTION_

iRet = PCO_SetTimestampMode(cam,TIMESTAMP_MODE_BINARYANDASCII);

#endif

iRet = PCO_ArmCamera(cam);

DWORD CameraWarning, CameraError, CameraStatus;

iRet = PCO_GetCameraHealthStatus(cam, &CameraWarning, &CameraError,←↩
&CameraStatus);

if(CameraError!=0)

{

printf("Camera has ErrorStatus\n");

printf("Press <Enter> to end\n");

iRet = getchar();

iRet = PCO_CloseCamera(cam);

return -1;

}

print_transferpar(cam);

printf("Start and after some time stop camera\n");

iRet = PCO_SetRecordingState(cam, 1);

//wait while camera is recording

Sleep(500);

iRet = PCO_SetRecordingState(cam, 0);

DWORD ValidImageCnt, MaxImageCnt;

WORD Segment=1; //this is the default segment

iRet = PCO_GetNumberOfImagesInSegment(cam, Segment, &ValidImageCnt,←↩
&MaxImageCnt);

if(ValidImageCnt >= 1)

{

DWORD bufsize,StatusDLL,StatusDrv,set;

WORD XResAct, YResAct, XBin, YBin;

WORD RoiX0, RoiY0, RoiX1, RoiY1;

iRet = PCO_GetSegmentImageSettings(cam,Segment, &XResAct, &←↩
YResAct,

&XBin, &YBin, &RoiX0, &RoiY0, &RoiX1, &RoiY1);

for(int b=0;b<BUFNUM;b++)

{

BufEvent[b] = NULL;

BufNum[b] = -1;

pco.sdk Chapter 4

pco.sdk user manual 1.30.0 327

BufAdr[b]=NULL;

}

bufsize = XResAct*YResAct*sizeof(WORD);

for(int b=0;b<BUFNUM;b++)

{

iRet = PCO_AllocateBuffer(cam, &BufNum[b], bufsize, &BufAdr[b],←↩
&BufEvent[b]);

}

iRet = PCO_SetImageParameters(cam, XResAct, YResAct,←↩
IMAGEPARAMETERS_READ_FROM_SEGMENTS,NULL,0);

int test,next,multi;

test=next=multi=0;

printf("Grab recorded images from camera current valid %d\n",←↩
ValidImageCnt);

set=1;

for(int b=0;b<BUFNUM;b++)

{

if(ValidImageCnt >= set)

{

iRet = PCO_AddBufferEx(cam,set,set, BufNum[b], XResAct, ←↩
YResAct, 16);

set++;

}

}

for(DWORD i=1;i<=10;i++)

{

printf("%02d. image ",i);

if(ValidImageCnt < i)

{

printf("not available \n");

break;

}

multi=0;

printf("wait ");

waitstat=WaitForMultipleObjects(BUFNUM,BufEvent,FALSE,1000);

if(waitstat==WAIT_TIMEOUT)

{

printf("failed\n");

break;

}

// WaitForMultipleObjects might return with 2 or more events set, so ←↩
all buffers must be checked

// 'test' and 'next' help to start check at last successfull buffer

// 'multi' counts the number of buffers, which have their event set

test=next;

for(int b=0;b<BUFNUM;b++)

{

waitstat=WaitForSingleObject(BufEvent[test],0);

if(waitstat==WAIT_OBJECT_0)

{

pco.sdk Chapter 4

pco.sdk user manual 1.30.0 328

multi++;

ResetEvent(BufEvent[test]);

iRet = PCO_GetBufferStatus(cam,BufNum[test],&StatusDLL,&←↩
StatusDrv);

//!!! IMPORTANT StatusDrv must always be checked for errors

if(StatusDrv==PCO_NOERROR)

{

printf(" done buf%02d status 0x%08x ",test,StatusDrv);

if(multi>1)

printf("multi %02d ",multi);

}

else

{

printf("buf%02d error status 0x%08x m %02d ",test,←↩
StatusDrv,multi);

break;

}

// calculations on the image data can be done here, but calculation ←↩
time must not exceed

// frametime of camera else images are lost

#ifdef _FILEFUNCTION_

sprintf(filename,"addrec_image_%02d.tif",i);

store_tiff(filename, XResAct, YResAct, 0, BufAdr[test]);

printf("and stored to %s",filename);

#endif

if(ValidImageCnt >= set)

{

iRet = PCO_AddBufferEx(cam,set,set, BufNum[test], XResAct←↩
, YResAct, 16);

set++;

}

}

else

break;

test++;

if(test>=BUFNUM)

test=0;

printf("\n");

}

next=test;

fflush(stdout);

}//end for imacount

//!!! IMPORTANT PCO_CancelImages must always be called, after ←↩
PCO_AddBuffer...() loops

iRet = PCO_CancelImages(cam);

for(int b=0;b<BUFNUM;b++)

iRet = PCO_FreeBuffer(cam, BufNum[b]);

}

iRet = PCO_CloseCamera(cam);

pco.sdk Chapter 4

pco.sdk user manual 1.30.0 329

printf("Press <Enter> to end\n");

iRet = getchar();

return 0;

}

void print_transferpar(HANDLE cam)

{

PCO_CameraType strCamType;

DWORD iRet;

strCamType.wSize=sizeof(PCO_CameraType);

iRet = PCO_GetCameraType(cam,&strCamType);

if(iRet!=PCO_NOERROR)

{

printf("PCO_GetCameraType failed with errorcode 0x%x\n",iRet);

return;

}

if(strCamType.wInterfaceType==INTERFACE_CAMERA LINK)

{

PCO_SC2_CL_TRANSFER_PARAM cl_par;

iRet = PCO_GetTransferParameter(cam,(void*)&cl_par,sizeof(←↩
PCO_SC2_CL_TRANSFER_PARAM));

printf("Camlink Settings:\nBaudrate: %u\nClockfreq: %u\n",←↩
cl_par.baudrate,cl_par.ClockFrequency);

printf("Dataformat: %u 0x%x\nTransmit: %u\n",cl_par.←↩
DataFormat,cl_par.DataFormat,cl_par.Transmit);

}

}

pco.sdk Chapter 4

pco.sdk user manual 1.30.0 330

4.6 Debugging with GigE interface

While debugging with the GigE interface, it might be possible to get error 0xA0322005, which

means time-out. This is caused by a long break between two debugging steps (usually > 65s).

Single stepping stops all threads executed till the next step. This disables the sc2_gige.dll

thread to send heartbeat messages to the camera. The camera will generate a timeout due to lost

connection. In this case please stop and restart your debug session. Keep in mind that you’ll have

to step quickly through your code while debugging with a GigE interface.

pco.sdk Chapter 4

pco.sdk user manual 1.30.0 331

5 Error/Warning Codes

The error codes are standardized as far as possible. The error codes contain the information of

the error layer, the source (microcontrollers, CPLDs, FPGAs) and an error code (error cause). All

values are combined by a logical OR operation. Error codes and warnings are always negative

values, if read as signed integers, or if read as unsigned integer the MSB is set. Errors have the

general format 0x80######, warnings have the format 0xC0######. The error numbers are not

unique. Each layer and the common errors have its own error codes. You have to analyze the error

in order to get error source. This can easily be done with a call to PCO_GetErrorTextSDK.

// e.g.: 0xC0000080 indicates a warning,

// 0x800A3001 is an error inside the SC2-SDK-DLL.

// MSB LSB

// XXXX XXXX XXXX XXXX XXXX XXXX XXXX XXXX

// |||| |||| |||| |||| |||| |||| |||| ||||

// |||| |||| |||| |||| |||| --------------- Error or warning code

// |||| |||| |||| |||| ||||

// |||| |||| |||| |||| -------------------- Layer code

// |||| |||| |||| ||||

// |||| |||| ------------------------------ Device code

// |||| ||||

// |||------------------------------------- reserved for future use

// |||

// ||-------------------------------------- Common error code flag

// ||

// |--------------------------------------- Warning indication bit

// |

// -- Error indication bit

Error Layer Value Name Description

0x00001000 PCO_ERROR_FIRMWARE Error inside the firmware

0x00002000 PCO_ERROR_DRIVER Error inside the driver

0x00003000 PCO_ERROR_SDK_DLL Error inside the SDK library

0x00004000 PCO_ERROR_APPLICATION Error inside the application

0x00005000 PCO_ERROR_COMDEVICE Error inside a com device

Error / Warning

source

Some Examples

Value Name Description

0x00010000 SC2_ERROR_PCOCAM_POWER_CPLD Error at CPLD in power unit

0x00020000 SC2_ERROR_PCOCAM_HEAD_UP Error at uP of head board in camera

0x00030000 SC2_ERROR_PCOCAM_MAIN_UP Error at uP of main board in camera

0x00040000 SC2_ERROR_PCOCAM_FWIRE_UP Error at uP of FireWire board in camera

0x00050000 SC2_ERROR_PCOCAM_MAIN_FPGA Error at FPGA of main board in camera

0x00060000 SC2_ERROR_PCOCAM_HEAD_FPGA Error at FGPA of head board in camera

0x00070000 SC2_ERROR_PCOCAM_MAIN_BOARD Error at main board in camera

0x00080000 SC2_ERROR_PCOCAM_HEAD_CPLD Error at CPLD of head board in camera

Continued on next page

pco.sdk Chapter 5

pco.sdk user manual 1.30.0 332

Continued from previous page

Value Name Description

0x00090000 SC2_ERROR_SENSOR Error at image sensor (CCD or CMOS)

0x000A0000 SC2_ERROR_SDKDLL Error inside the SDKDLL

0x000B0000 SC2_ERROR_DRIVER Error inside the driver

0x000D0000 SC2_ERROR_POWER Error within power unit

0x00100000 PCO_ERROR_CAMWARE Error in pco.camware also some kind of

”device”

0x00110000 PCO_ERROR_CONVERTDLL Error inside the convert DLL

Error Codes Please take a look at the file pco_err.h.

Warnings Please take a look at the file pco_err.h.

In case of successful operation PCO_NOERROR is returned. To get detailed error information call

the function PCO_GetErrorTextSDK, which is defined inside the sc2_camexport.h header file.

5.1 PCO_GetErrorTextSDK

Description Call this function to get an error string for the error supplied

Supported

camera type(s)

All cameras

Descriptor

dependency

None

Prototype
SC2_SDK_FUNC void WINAPI PCO_GetErrorTextSDK (

DWORD dwError, //in

char* pszErrorString, //out

DWORD dwErrorStringLength //in

);

Parameter Name Type Description

dwError DWORD Error code got from a function call

pszErrorString char* Pointer to a char array to receive the error text

dwErrorStringLength DWORD Size of the error string buffer

Example
DWORD dwError = PCO_NOERROR;

...

char szErrorString[100];

DWORD dwErrorStringLength = 100;

PCO_GetErrorTextSDK(dwError, szErrorString, dwErrorStringLength);

pco.sdk Chapter 5

pco.sdk user manual 1.30.0 333

pco.sdk Chapter 5

pco.sdk user manual 1.30.0 334

6 About Excelitas PCO

PCO, an Excelitas Technologies® Corp. brand, is a leading specialist and Pioneer in Cameras

and Optoelectronics with more than 30 years of expert knowledge and experience of developing

and manufacturing high-end imaging systems. The company’s cutting edge sCMOS and high-

speed cameras are used in scientific and industrial research, automotive testing, quality control,

metrology and a large variety of other applications all over the world.

The PCO® advanced imaging concept was conceived in the early 1980s by imaging pioneer, Dr.

Emil Ott, who was conducting research at the Technical University of Munich for the Chair of

Technical Electrophysics. His work there led to the establishment of PCO AG in 1987 with the

introduction of the first image-intensified camera followed by the development of its proprietary

Advanced Core technologies which greatly surpassed the imaging performance standards of the

day.

Today, PCO continues to innovate, offering awide range of high-performance camera technologies

covering scientific, high-speed, intensified and FLIM imaging applications across the scientific

research, industrial and automotive sectors.

Acquired by Excelitas Technologies in 2021, PCO represents a world renowned brand of high-

performance scientific CMOS, sCMOS, CCD and high-speed cameras that complement Excelitas’

expansive range of illumination, optical and sensor technologies and extend the bounds of our

end-to-end photonic solutions capabilities.

pco.sdk Chapter 6

pco.sdk user manual 1.30.0 335

telephone:

fax:

postal address:

email:

web:

+ 49 (0) 9441 2005 50

+ 49 (0) 9441 2005 20

Excelitas PCO GmbH

Donaupark 11

93309 Kelheim, Germany

pco@excelitas.com

www.pco.de

www.excelitas.com

	General
	Overview
	Conventions
	Building Applications
	Running Applications
	Compiling and Linking
	SDK Folder Overview
	SDK Logging
	Prototype Example

	API Function Sections
	Camera Access
	PCO_OpenCamera
	PCO_ScanCameras
	PCO_OpenNextCamera
	PCO_OpenCameraDevice
	PCO_GetCameraDeviceStruct
	PCO_OpenCameraEx
	PCO_Openstruct Structure

	PCO_CloseCamera
	PCO_ResetLib
	PCO_InitializeLib
	PCO_CleanupLib
	PCO_GetVersionInfoSC2_Cam
	PCO_CheckDeviceAvailability
	PCO_GetDeviceStatus

	Camera Description
	PCO_GetCameraDescription
	PCO_GetCameraDescriptionEx
	PCO_Description Structure
	Color Pattern Description (2x2 matrix)
	Sensor Type Codes
	GeneralCaps1-Bits
	GeneralCaps3-Bits
	PCO_Description2 Structure
	ModulateCaps-Bits

	General Camera Status
	PCO_GetGeneral
	PCO_General Structure

	PCO_GetCameraType
	PCO_CameraType Structure
	Camera type codes
	Interface type codes

	PCO_GetCameraHealthStatus
	Warning bits
	Error bits
	Status bits

	PCO_GetTemperature
	PCO_GetInfoString
	InfoType

	PCO_GetCameraName
	PCO_GetFirmwareInfo
	PCO_SC2_Firmware_DESC Structure

	PCO_GetColorCorrectionMatrix
	PCO_GetDSNUAdjustMode
	PCO_SetDSNUAdjustMode
	PCO_InitDSNUAdjustment

	General Camera Control
	PCO_ArmCamera
	PCO_CamLinkSetImageParameters (obsolete)
	PCO_SetImageParameters
	Image parameter bits

	PCO_ResetSettingsToDefault
	Default settings

	PCO_SetTimeouts
	PCO_RebootCamera
	PCO_GetCameraSetup
	pco.edge dwSetup[0]

	PCO_SetCameraSetup
	PCO_GetShutterMode
	PCO_SetShutterMode
	PCO_ControlCommandCall
	PCO_GetFanControlParameters
	PCO_SetFanControlParameters

	Image Sensor
	PCO_GetSensorStruct
	PCO_SetSensorStruct
	PCO_Sensor Structure

	PCO_GetSizes
	PCO_GetSensorFormat
	PCO_SetSensorFormat
	PCO_GetROI
	PCO_SetROI
	PCO_GetBinning
	PCO_SetBinning
	PCO_GetPixelRate
	PCO_SetPixelRate
	PCO_GetConversionFactor
	PCO_SetConversionFactor
	PCO_GetDoubleImageMode
	PCO_SetDoubleImageMode
	PCO_GetADCOperation
	PCO_SetADCOperation
	PCO_GetIRSensitivity
	PCO_SetIRSensitivity
	PCO_GetCoolingSetpointTemperature
	PCO_SetCoolingSetpointTemperature
	PCO_GetCoolingSetpoints
	PCO_GetOffsetMode
	PCO_SetOffsetMode
	PCO_GetNoiseFilterMode
	PCO_SetNoiseFilterMode
	PCO_GetLookupTableInfo
	PCO_GetActiveLookupTable
	PCO_SetActiveLookupTable
	PCO_GetSensorDarkOffset

	Timing Control
	PCO_GetTimingStruct
	PCO_SetTimingStruct
	PCO_Timing Structure

	PCO_GetCOCRuntime
	PCO_GetDelayExposureTime
	PCO_SetDelayExposureTime
	PCO_GetDelayExposureTimeTable
	PCO_SetDelayExposureTimeTable
	PCO_GetFrameRate
	PCO_SetFrameRate
	PCO_GetFPSExposureMode
	PCO_SetFPSExposureMode
	PCO_GetTriggerMode
	Explanation of available trigger modes

	PCO_SetTriggerMode
	PCO_ForceTrigger
	PCO_GetCameraBusyStatus
	PCO_GetPowerDownMode
	PCO_SetPowerDownMode
	PCO_GetUserPowerDownTime
	PCO_SetUserPowerDownTime
	PCO_GetModulationMode
	Modulation Mode Timing Diagram

	PCO_SetModulationMode
	PCO_GetHWIOSignalCount
	PCO_GetHWIOSignalDescriptor
	PCO_Single_Signal_Desc Structure
	Signal definitions bits
	Signal I/O standard bits
	Signal polarity bits
	Signal filter option bits
	Signal functionality
	Extended signal timing rolling shutter

	PCO_GetHWIOSignal
	PCO_SetHWIOSignal
	PCO signal Structure

	PCO_GetHWIOSignalTiming
	PCO_SetHWIOSignalTiming
	PCO_GetImageTiming
	PCO ImageTiming Structure

	PCO_GetCameraSynchMode
	PCO_SetCameraSynchMode
	PCO_GetExpTrigSignalStatus
	PCO_GetFastTimingMode
	PCO_SetFastTimingMode

	Recording Control
	PCO_GetRecordingStruct
	PCO_SetRecordingStruct
	PCO_Recording Structure

	PCO_GetRecordingState
	PCO_SetRecordingState
	PCO_GetStorageMode
	PCO_SetStorageMode
	PCO_GetRecorderSubmode
	PCO_SetRecorderSubmode
	PCO_GetAcquireMode
	PCO_SetAcquireMode
	PCO_GetAcquireModeEx
	PCO_SetAcquireModeEx
	PCO_GetAcqEnblSignalStatus
	PCO_GetAcquireControl
	PCO_SetAcquireControl
	PCO_GetMetaDataMode
	PCO_SetMetaDataMode
	PCO_GetRecordStopEvent
	PCO_SetRecordStopEvent
	PCO_StopRecord
	PCO_SetDateTime
	PCO_GetTimestampMode
	PCO_SetTimestampMode

	Storage Control
	PCO_GetStorageStruct
	PCO_SetStorageStruct
	PCO_Storage Structure

	PCO_GetCameraRamSize
	PCO_GetCameraRamSegmentSize
	PCO_SetCameraRamSegmentSize
	PCO_ClearRamSegment
	PCO_GetActiveRamSegment
	PCO_SetActiveRamSegment
	PCO_GetCompressionMode
	PCO_SetCompressionMode
	PCO_GetMaxNumberOfImagesInSegment

	Image Information
	PCO_GetImageStruct
	PCO_Image Structure

	PCO_GetSegmentStruct
	PCO_Segment Structure

	PCO_GetSegmentImageSettings
	PCO_GetNumberOfImagesInSegment
	PCO_GetBitAlignment
	PCO_SetBitAlignment
	PCO_GetHotPixelCorrectionMode
	PCO_SetHotPixelCorrectionMode

	Buffer Management
	PCO_AllocateBuffer
	PCO_FreeBuffer
	PCO_GetBufferStatus
	PCO_GetBuffer

	Image Acquisition
	PCO_GetImageEx
	PCO_GetImage (obsolete)
	PCO_AddBufferEx
	PCO_AddBuffer (obsolete)
	PCO_AddBufferExtern
	PCO_AddBufferExtern_CB
	PCO_CancelImages
	PCO_RemoveBuffer (obsolete)
	PCO_GetPendingBuffer
	PCO_WaitforBuffer
	PCO_Buflist Structure

	PCO_WaitforNextBufferNum
	PCO_WaitforNextBufferAdr
	PCO_EnableSoftROI
	PCO_GetAPIManagement
	PCO_GetMetaData
	PCO_METADATA_STRUCT Structure

	PCO_GetMetaDataExtern
	PCO_GetTimeStamp

	Driver Management
	PCO_GetTransferParameter
	PCO_SetTransferParameter
	Transfer Parameter Structures
	FireWire interface
	CameraLink interface
	USB interface
	GigE interface

	Special Commands pco.edge
	PCO_GetSensorSignalStatus
	Sensor action state bits

	PCO_GetCmosLineTiming
	PCO_SetCmosLineTiming
	PCO_GetCmosLineExposureDelay
	PCO_SetCmosLineExposureDelay
	PCO_SetTransferParametersAuto
	PCO_GetInterfaceOutputFormat
	SCCMOS readout format

	PCO_SetInterfaceOutputFormat

	Special Commands pco.dimax
	PCO_GetImageTransferMode
	IMAGE_TRANSFER_MODE_PARAM Structure
	Transfer mode definition
	Parameter transfer mode cutout XY
	Parameter transfer mode scaled 8 bit

	PCO_SetImageTransferMode
	PCO_GetCDIMode
	PCO_SetCDIMode
	PCO_GetPowerSaveMode
	PCO_SetPowerSaveMode
	PCO_GetBatteryStatus

	Special Commands pco.dimax with HD-SDI
	PCO_GetInterfaceOutputFormat
	PCO_SetInterfaceOutputFormat
	HD-SDI formats

	PCO_PlayImagesFromSegmentHDSDI
	PCO_GetPlayPositionHDSDI
	PCO_GetColorSettings
	PCO_SetColorSettings
	PCO_Image_ColorSet Structure

	PCO_DoWhiteBalance

	Special Commands pco.flim
	PCO_GetFlimModulationParameter
	PCO_SetFlimModulationParameter
	PCO_GetFlimMasterModulationFrequency
	PCO_SetFlimMasterModulationFrequency
	PCO_GetFlimPhaseSequenceParameter
	PCO_SetFlimPhaseSequenceParameter
	PCO_GetFlimRelativePhase
	PCO_SetFlimRelativePhase
	PCO_GetFlimImageProcessingFlow
	PCO_SetFlimImageProcessingFlow
	Image sequences

	Lens Control
	PCO_InitLensControl
	PCO_LensControl Structure
	PCO_LensControlParameters
	DEFINES

	PCO_CleanupLensControl
	PCO_CloseLensControl
	PCO_GetLensFocus
	PCO_SetLensFocus
	PCO_GetAperture
	PCO_SetAperture
	PCO_GetApertureF
	PCO_SetApertureF
	PCO_SendBirgerCommand
	PCO_Birger Structure

	Special Commands pco.dicam
	PCO_GetIntensifiedGatingMode
	PCO_SetIntensifiedGatingMode
	PCO_GetIntensifiedMCP
	PCO_SetIntensifiedMCP
	PCO_GetIntensifiedLoopCount
	PCO_SetIntensifiedLoopCount
	PCO_Description_Intensified

	Image Area Selection (ROI)
	Camera Constraints

	Typical Implementation
	Basic Handling
	Short Code Discussion

	Example 'Get single images from running camera'
	Example 'Get single images from camera recorder'
	Example 'Get multiple images from running camera'
	Example 'Get multiple images from camera recorder'
	Debugging with GigE interface

	Error/Warning Codes
	PCO_GetErrorTextSDK

	About Excelitas PCO

