
vid = videoinput(‘pcocameraadaptor_r2022b‘,0);

src = getselectedsource(vid);

src.TMTimestampMode = ‚BinaryAndAscii‘;

triggerconfig(vid, ‚immediate‘);

vid.FramesPerTrigger = 100;

start(vid);
images = getdata(vid);

implay(images);

vid = videoinput(‘pcocameraadaptor_r2022b‘,0);

src = getselectedsource(vid);

src.TMTimestampMode = ‚BinaryAndAscii‘;

triggerconfig(vid, ‚immediate‘);

vid.FramesPerTrigger = 100;

start(vid);
images = getdata(vid);

implay(images);

vid = videoinput(‘pcocameraadaptor_r2022b‘,0);

src = getselectedsource(vid);

src.TMTimestampMode = ‚BinaryAndAscii‘;

triggerconfig(vid, ‚immediate‘);

vid.FramesPerTrigger = 100;

start(vid);
images = getdata(vid);

implay(images);

pco.matlab

user manual

vid = videoinput(‘pcocameraadaptor_r2022b‘,0);

src = getselectedsource(vid);

src.TMTimestampMode = ‚BinaryAndAscii‘;

triggerconfig(vid, ‚immediate‘);

vid.FramesPerTrigger = 100;

start(vid);
images = getdata(vid);

implay(images);

Excelitas PCO GmbH asks you to carefully read and follow the instructions in this document.

For any questions or comments, please feel free to contact us at any time.

telephone: +49 (0) 9441 2005 50

fax: +49 (0) 9441 2005 20

postal address: Excelitas PCO GmbH

Donaupark 11

93309 Kelheim, Germany

email: pco@excelitas.com

web: www.pco.de

pco.matlab user manual 1.19.1

Released February 2024

©Copyright Excelitas PCO GmbH

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License. To

view a copy of this license, visit http://creativecommons.org/licenses/by-nd/4.0/ or send a letter to Creative

Commons, PO Box 1866, Mountain View, CA 94042, USA.

pco.matlab

pco.matlab user manual 1.19.1 2

mailto:pco@excelitas.com
https://www.pco.de/
http://creativecommons.org/licenses/by-nd/4.0/

vid = videoinput(‘pcocameraadaptor_r2022b‘,0);

src = getselectedsource(vid);

src.TMTimestampMode = ‚BinaryAndAscii‘;

triggerconfig(vid, ‚immediate‘);

vid.FramesPerTrigger = 100;

start(vid);
images = getdata(vid);

implay(images);

Contents

1 Introduction 4

1.1 Installation . 4

2 Adapter for Matlab Image Acquisition Toolbox 6

2.1 Adapter Setup . 6

2.2 Matlab Image Acquisition GUI . 7

2.3 Related manuals . 7

2.4 Explorer Toolbar . 7

2.4.1 CONFIGURE FORMAT . 7

2.4.2 LOGGING . 7

2.4.3 SNAPSHOT . 8

2.4.4 RECORD . 8

2.4.5 Additional Sections . 8

2.5 Device Properties . 8

2.5.1 Overview . 8

2.5.2 Annotations . 12

2.6 Triggering . 12

2.7 Region of interest . 13

2.8 Troubleshooting . 13

3 Flim package 14

3.1 Flim introduction . 14

3.2 File organization . 14

3.2.1 Flim functions . 14

3.2.1.1 flim_rearrange_stack . 15

3.2.1.2 flim_numeric_harmonic_analysis . 16

3.2.1.3 flim_numeric_harmonic_analysis_phasor . 17

3.2.1.4 flim_referencing . 18

3.2.1.5 flim_referencing_phasor . 19

3.2.1.6 flim_get_lifetimes . 20

3.2.1.7 flim_get_lifetimes_phasor . 21

3.2.2 Example using multi-tiff files . 22

3.2.3 Example using matlab memory data . 23

4 SDK example scripts 24

4.1 General . 25

4.2 SDK examples . 25

4.2.1 PCO_sdk_example_single . 26

4.2.2 PCO_sdk_example_swtrig . 26

4.2.3 PCO_sdk_example_live_getima . 27

4.2.4 PCO_sdk_example_live_add . 28

4.2.5 PCO_sdk_example_stack . 29

4.2.6 PCO_sdk_example_read . 30

4.3 Recorder examples . 31

4.3.1 PCO_sdk_example_recorder . 31

5 About Excelitas PCO 32

pco.matlab

pco.matlab user manual 1.19.1 3

vid = videoinput(‘pcocameraadaptor_r2022b‘,0);

src = getselectedsource(vid);

src.TMTimestampMode = ‚BinaryAndAscii‘;

triggerconfig(vid, ‚immediate‘);

vid.FramesPerTrigger = 100;

start(vid);
images = getdata(vid);

implay(images);

1 Introduction

There are three main components in the pco.matlab package for PCO cameras:

The pco.matlab adaptor (chapter 2) integrates your PCOcamera(s) into theMATLAB Image Acquisition

Toolbox. This makes it very simple for you to conveniently control your camera system and acquire

images in MATLAB.

With the pco.matlab flim package (chapter 3) you get a basic set of MATLAB functions. It helps you

to compute phase and modulation depth images as well as lifetime images out of the camera’s

raw data. Furthermore, the pco.flim white paper supports you with detailed explanations and

mathematical descriptions.

The pco.matlab scripts (chapter 4) provide you a collection of example m-files that allow you to

call functions from pco.sdk and pco.recorder directly from the MATLAB scripting language. More

features of PCO cameras are accessible through the SDK than through the Image Acquisition

toolbox. The examples show you how to initialize the camera, change camera settings, and grab

images from an operating camera or the camera’s internal memory. Grabbed images are displayed

directly in a MATLAB figure window or collected in an image stack. Use MATLAB algorithms to

further process the images from the image stack.

1.1 Installation

Windows Download the Windows installer, unzip it and execute it. Simply follow the steps in the installer.

In your install directory (default: C:\Program Files\PCO Digital Camera Toolbox\pco.matlab) you

will find:

• An adaptor directory containing everything releated to the image acquisition toolbox (see

chapter refsec:adapterformatlab)

• A flim directory containing the example scripts to work with images recorded by a pco.flim

camera (see chapter 3)

• An scripts directory containing example scripts for using pco.sdk pco.recorder SDK’s directly

in matlab (see chapter 4)

• A runtime directory with the needed binaries, libraries and header files

pco.matlab Chapter 1

pco.matlab user manual 1.19.1 4

vid = videoinput(‘pcocameraadaptor_r2022b‘,0);

src = getselectedsource(vid);

src.TMTimestampMode = ‚BinaryAndAscii‘;

triggerconfig(vid, ‚immediate‘);

vid.FramesPerTrigger = 100;

start(vid);
images = getdata(vid);

implay(images);

Linux Download the *.deb package file. Install it by using dpkg, e.g. in the command line with this

command: 1

$ sudo dpkg -i pco.matlab_*.*.*_amd64.deb

This will install pco.matlab into /opt/pco/pco.matlab.

In your install directory (default: /opt/pco/pco.matlab) you will find:

• An adaptor directory containing everything related to the image acquisition toolbox (see

chapter 2)

• A flim directory containing the example scripts to work with images recorded by a pco.flim

camera (see chapter 3)

• An scripts directory containing example scripts for using pco.sdk pco.recorder SDK’s directly

in matlab (see chapter 4)

• A runtime directory with the needed binaries, libraries and header files

Note: On linux, currently the pco.kaya-runtime package causes problemswhen using the pco.matlab

adaptor for Matlab Image Acquisition Toolbox. So in this case go to home/.config/pco, open

pco_devicemgr_param.ini and make sure that the KAYA interface is disabled.

[INTERFACES]

...

CLHS_KAYA = disable

CLHS_KAYA_SCAN = disable

...

1The dpkg package needs to be installed for this, this can be done by sudo apt-get install dpkg

pco.matlab Chapter 1

pco.matlab user manual 1.19.1 5

vid = videoinput(‘pcocameraadaptor_r2022b‘,0);

src = getselectedsource(vid);

src.TMTimestampMode = ‚BinaryAndAscii‘;

triggerconfig(vid, ‚immediate‘);

vid.FramesPerTrigger = 100;

start(vid);
images = getdata(vid);

implay(images);

2 Adapter for Matlab Image Acquisition Toolbox

This chapter describes the use and the features of the pco.matlab adaptor for the MATLAB Image

Acquisition Toolbox.

The PCOCameraAdaptor_<version>.dll/so represents the actual adaptor which is used,

where <version> represents the Matlab version, e.g R2022b.

The section 2.1 (adapter setup) shows how to set up and register the PCO adapter. Additionally a

readme.txt is provided giving the same installation instructions. Several example script files show

how to set up the camera and acquire images for different use cases, using the adaptor functions.

The pco_imaqregister.m function provides the registration of the adaptor.

After having set up and registered the adaptor it is possible to acquire images from pco cameras

in two ways:

• You can completely work with commands either in the command window or by creating

m-files for the image acquisition toolbox.

• The second possibility is to use the image acquisitionGUI provided byMATLABwith graphical

elements for properties and acquisition commands.

The adaptor supports all camera types.

Due to the toolbox structure only streaming is supported, it isn’t possible to read out camera

RAM.

If reading camera RAM is required, script files for MATLAB have to be used (see chapter 4).

This adaptor is supported for MATLAB R2016a and later versions.

2.1 Adapter Setup

To use the adaptor for the image acquisition toolbox in matlab, follow these steps:

1. Open Matlab and make sure you have the image acquisition toolbox installed

(by typing ver in the Matlab command window)

2. Choose <installation folder>/adaptor as current folder in matlab

3. Register the adaptor in the toolbox by calling pco_imaqregister or

pco_imaqregister('register') in the matlab command line.

This will copy the suitablePCOCameraAdaptor_<version>.dll/so and necessary sdk binaries

into the current folder and the adaptor will be registered from this location.

(If an older version of the adaptor has already been registered before, it will automatically be

unregistered before)

Note By calling pco_imaqregister('unregister') you can unregister the PCOCameraAdaptor

(location doesn’t matter)

To check if the register was successful, type imaqhwinfo in the command window.

Here pcocameraadaptor_<version> has to appear in the line of InstalledAdaptors

After completing these steps you will be able to access the pco cameras from the image acquisition

toolbox.

pco.matlab Chapter 2

pco.matlab user manual 1.19.1 6

vid = videoinput(‘pcocameraadaptor_r2022b‘,0);

src = getselectedsource(vid);

src.TMTimestampMode = ‚BinaryAndAscii‘;

triggerconfig(vid, ‚immediate‘);

vid.FramesPerTrigger = 100;

start(vid);
images = getdata(vid);

implay(images);

2.2 Matlab Image Acquisition GUI

The Image Acquisition GUI provided by MATLAB is an easy way to acquire images. The available

cameras and their attributes are clearly arranged. The previewing and recording can be controlled

by several buttons.

Beginning with R2022a, MATLAB changed the style of the GUI completely and they call it Image

Acquisition Explorer. The descriptions in the following chapters are based on this newGUI layout.

If you need the description for the old Image AcquisitionGUI, please contact us at pco@excelitas.com.

2.3 Related manuals

To get more information on working with the image acquisition toolbox, have a look at the MATLAB

Image Acquisition Toolbox Documentation. For further information on the camera properties, read

the latest pco.sdk manual.

2.4 Explorer Toolbar

On the top of the MATLAB Image Acquisition Explorer GUI there is a EXPLORER toolbar which

contains the most important settings, grouped by functionality.

2.4.1 CONFIGURE FORMAT

The image/video configuration is done in the CONFIGURE FORMAT section of the toolbox

Video Format This property defines the interface(video) format of the camera. Since PCO cameras always have

a fixed interface this value cannot be changed

Color Space This property sets the color of the image. The values that can be set here depend on the image

type delivered by the camera. For monochrome cameras only grayscale is useful, since it is not

possible to get color information out of a grayscale image. For color cameras valid values are

grayscale and rgb representation.

Sensor

Alignment

This property would define the alignment of the color channels for correct bayer pattern demosaicing.

Since this is done automatically inside the adaptor, there is nothing to select here.

2.4.2 LOGGING

The settings for saving acquired images can be selected in the LOGGING section of the explorer

toolbox

• File: Log the data directly to disk

• Workspace Variable: Store the images in a workspace variable which can then be used e.g.

for further processing

For both modes there are textboxes to specify the name for the image and the video.

pco.matlab Chapter 2

pco.matlab user manual 1.19.1 7

mailto:pco@excelitas.com
https://de.mathworks.com/help/imaq/
https://www.excelitas.com/file-download/download/public/101891?filename=pco_sdk_Software_Development_Kit_User_Manual.pdf

vid = videoinput(‘pcocameraadaptor_r2022b‘,0);

src = getselectedsource(vid);

src.TMTimestampMode = ‚BinaryAndAscii‘;

triggerconfig(vid, ‚immediate‘);

vid.FramesPerTrigger = 100;

start(vid);
images = getdata(vid);

implay(images);

2.4.3 SNAPSHOT

The SNAPSHOT section of the explorer toolbox has a Capture button to snap one image into a

workspace variable.

2.4.4 RECORD

The recording settings are done in the RECORD section of the explorer toolbox.

Here you can switch between three options:

• Finite: Record the defined number of frames / Record for the defined number of seconds

• Continuous: Continuously record images until stop is pressed

• Hardware Trigger: Use hardware trigger to control the image acquisition (see section 2.6)

Pressing the Record button will start the recording.

2.4.5 Additional Sections

Additionally, the Explorer Toolbox has threemore sectionswhich provide additional functionality.

• VISUALIZE AND ANALYZE: This section lists tools which can be used to visualize and

analyze the recorded images.

• EXPORT: Here you can open script editors to create scripts for operating the imaq toolbox.

• CLOSE: The Close Session button is a convenient way to cleanup everything and close the

camera and the toolbox.

2.5 Device Properties

Most of the camera settings available in pco.camware are also available in the adaptor. They can

be found in the Device Properties section of the GUI.

Due to the structure of adaptor properties they are arranged in a different way. The device properties

don’t belong to a video input object but to a video source object. Besides delay time, exposure

time and frame rate, acquisition or preview is automatically stopped when changing a property,

afterwards it will be restarted.

2.5.1 Overview

The following table shows an overview of all described device properties in alphabetical order and

indicates if they are read-only and available for all cameras. Properties where the availability is

specific are only visible if the camera supports them.

Property Description Read-only Availability

AMAcquireMode

Acquire mode of the camera

auto, extern or sequence

triggered.

No Specific

Continued on next page

pco.matlab Chapter 2

pco.matlab user manual 1.19.1 8

vid = videoinput(‘pcocameraadaptor_r2022b‘,0);

src = getselectedsource(vid);

src.TMTimestampMode = ‚BinaryAndAscii‘;

triggerconfig(vid, ‚immediate‘);

vid.FramesPerTrigger = 100;

start(vid);
images = getdata(vid);

implay(images);

Continued from previous page

Property Description Read-only Availability

AMImageNumber

Images to acquire for one

acquisition pulse. Will be

ignored if acquire mode

is auto or extern.

No Specific

B1BinningHorizontal

Horizontal binning of the

camera: The binning will reduce

the resolution of the camera by

the binning factor. This also

effects the hardware ROI.

Binning may change the pattern

of color cameras.

No Always

B2BinningVertical

Vertical binning of the

camera: The binning will reduce

the resolution of the camera by

the binning factor. This also

effects the hardware ROI.

Binning may change the pattern

of color cameras.

No Always

CFConerversionFactor

_e_count

Conversion factor of the

camera.
No Always

DelayTime

Delay time of the camera [s]]:

Can only be set for some

cameras. Will be ignored if

FMFpsBased is set to on.

No, if

selectable
Always

DPCorePreparation

Switches DPCore preparation

on/off. Will appear if Jetraw is

installed or if the DPCore binaries

reside in the adaptor folder. The

property is active if the camera

is deposited in the DPCore,

otherwise grayed out.

No Specific

ExposureTime Exposure time of the camera [s] No Always

FlimIPAsymCorrection
Switch asymmetry correction

on/off.
No Specific

FlimMPMasterFrequency_Hz
Master modulation frequency

in Hz.
No Specific

FlimMPModulationSource
Select the modulation source

intern/extern.
No Specific

FlimMPOutputWaveform
Select the output waveform:

none/sine/square.
No Specific

FlimMPRelativePhase_mdeg Relative phase in millidegree. No Specific

FlimPSAddPhaseSampling

Switch additional phase

sampling (phase symmetry)

yes/no.

No Specific

FlimPSPhaseNumber Phase number. No Specific

FlimPSPhaseOrder
Phase order

(ascending/opposite).
No Specific

FlimPSTapSelection
Selected tap(s):

Tap A/Tap B/ Tap A+B.
No Specific

Continued on next page

pco.matlab Chapter 2

pco.matlab user manual 1.19.1 9

vid = videoinput(‘pcocameraadaptor_r2022b‘,0);

src = getselectedsource(vid);

src.TMTimestampMode = ‚BinaryAndAscii‘;

triggerconfig(vid, ‚immediate‘);

vid.FramesPerTrigger = 100;

start(vid);
images = getdata(vid);

implay(images);

Continued from previous page

Property Description Read-only Availability

FMFpsBased

Select if exposure time is

set together with delay time (off)

or frame rate (on). Can only

be set to -on- if trigger mode is

not hardware triggered.

No Specific

FRFrameRate

Frame rate of the camera in

mHZ. Will be ignored if

FMFpsBased is off.

No Specific

H1HardwareROI_X_Offset

Horizontal offset for HW ROI.

Can only be set for

some cameras. Changing

hardware ROI may change the

pattern of color cameras.

No, if

selectable
Always

H2HardwareROI_Width

Width for HW ROI. Can

only be set for some cameras.

Changing Hardware ROI may

change the pattern of color

cameras. If horizontal ROI has

to be symmetric, changes in

width will be reset and

horizontal ROI can only be

changed by the x offset.

No, if

selectable
Always

H3HardwareROIHor_Sym
Indicates if horizontal hardware

ROI has to be symmetric.
Yes Always

H4HardwareROI_Y_Offset

Vertical offset for HW ROI.

Can only be set for some

cameras. Changing Hardware

ROI may change the pattern

of color cameras.

No, if

selectable
Always

H5HardwareROI_Height

Height for HW ROI. Can

only be set for some cameras.

Changing Hardware ROI may

change the pattern of color

cameras. If vertical ROI has to

be symmetric, changes in

height will be reset and vertical

ROI can only be changed by

the y offset.

No, if

selectable
Always

H6HardwareROI_Vert_Sym
Indicates if vertical hardware

ROI has to be symmetric.
Yes Always

IO_x_SignalEnableDisable
Enable/disable IO signal

at port x.
No Specific

IO_x_SignalName

Select name of signal that

should be connected

with IO port x.

No Specific

IO_x_SignalPolarity Polarity of IO signal at port x. No Specific

IO_x_SignalType Type of IO Signal at port x. No Specific

IRMode Switch IR sensitivity on/off. No Specific

NFNoiseFilter Switch noise filter on/off. No Specific

Continued on next page

pco.matlab Chapter 2

pco.matlab user manual 1.19.1 10

vid = videoinput(‘pcocameraadaptor_r2022b‘,0);

src = getselectedsource(vid);

src.TMTimestampMode = ‚BinaryAndAscii‘;

triggerconfig(vid, ‚immediate‘);

vid.FramesPerTrigger = 100;

start(vid);
images = getdata(vid);

implay(images);

Continued from previous page

Property Description Read-only Availability

PCPixelclock_Hz
Pixel rate. Will set the

FMFpsBase to off if available.
No Always

RDIDoubleImageMode

Switch double image mode

on/off. See Annotations for

property description.

No Specific

SCMOSReadoutMode

Readout mode setting for

pco.edge cameras. This

parameter is only available for

pco.edge cameras in

rolling shutter.

No Specific

SFSensorFormat

Sensor format of the camera.

In the format (standard), only

affective pixels are read out

from the sensor. The readout

in the format (extended) is

camera dependent. This also

affects the hardware ROI.

The sensor format may change

the pattern of color cameras.

No Always

SMShutterMode

Shutter mode.

If shutter mode is changed,

the adaptor has to be

refreshed/reset.

No Specific

TMTimestampMode

Timestamp mode.

No stamp, binary,

binary-and-ASCII, ASCII.

No Specific

pco.matlab Chapter 2

pco.matlab user manual 1.19.1 11

vid = videoinput(‘pcocameraadaptor_r2022b‘,0);

src = getselectedsource(vid);

src.TMTimestampMode = ‚BinaryAndAscii‘;

triggerconfig(vid, ‚immediate‘);

vid.FramesPerTrigger = 100;

start(vid);
images = getdata(vid);

implay(images);

2.5.2 Annotations

AMAcquireMode

If acquire mode is set to extern or sequence triggered, the acquisition is controlled by an external

source. If high or low state is effective depends on the settings of the IO signal properties for the

acquire enable port. AMImageNumber property will only be created, if sequence trigger mode is

available.

FMFpsBased If frame rate and exposure time are set, it can occur that the values are trimmed by the camera. If

the selected exposure time is too high for the current frame rate, the frame rate will be trimmed and

updated. If the selected frame rate is too high, the exposure time will be trimmed and updated.

IRMODE Since there are different minimal andmaximal exposure times for IR sensitivity on and off, changing

IR mode will change min and max exposure time and perhaps (if current exposure time exceeds

the new range) also the current exposure time.

RDIDouble

ImageMode

If double image mode is set to ”on”, the camera will record two images directly after each other

instead of just one image. In the adaptor the two images are treated as one with doubled height

(first image on top, second on bottom). Setting some hardware ROI (if possible for the specific

camera) will affect each of the two images individually (as expected). Setting the soft ROI of the

pco.matlab adaptor will affect the two images as one, i.e. setting a y-offset of 10 means cutting

off the first 10 lines of the upper image, while the second image will not be affected. If the images

should be saved in separated files, the separation has to be done programmatically.

2.6 Triggering

For triggering you have to select Hardware Trigger in the RECORD section on top of the GUI.

Then the Hardware Trigger section appears where you can configure your trigger parameters

Number of

Triggers

This parameter sets the number of triggers you want to acquire. Using as a command you have

to set the TriggerRepeat property, which is always one less than the number of triggers.

Frames per

Trigger

This sets the frames that should be acquired with one trigger signal.

Since PCO cameras always record one image per trigger, setting Frames per Trigger > 1

results in the same behavior as adding this value to Number of Triggers. 1

Trigger Source Depending on the camera type one (or both) of the following trigger sources are available

• ExternExposureStart: An image is taken when an external signal rises or falls (depends on

the IO settings)

• ExternExposureCtrl: An image is taken when an external signal rises or falls (depends on

the IO settings). The exposure time is controlled by the length of the external pulse.

1This means that the MATLAB expects Frames per Trigger * Number of Triggers images and the camera will always record

1 image per trigger pulse

pco.matlab Chapter 2

pco.matlab user manual 1.19.1 12

vid = videoinput(‘pcocameraadaptor_r2022b‘,0);

src = getselectedsource(vid);

src.TMTimestampMode = ‚BinaryAndAscii‘;

triggerconfig(vid, ‚immediate‘);

vid.FramesPerTrigger = 100;

start(vid);
images = getdata(vid);

implay(images);

2.7 Region of interest

In addition to the hardware ROI property provided by the camera, MATLAB is also able to perform

software ROI.

This can be done in the ROI Position section of the GUI. You can either select the roi by adjusting

the rectangular frame that appears when pressingSelect ROI or bymanually adjustingX-Offset,Y-

Offset,Width and Height

The toolbox uses these settings to crop the image to its final size. The range of the four values is

limited by the camera resolution, the selected hardware ROI and binning.

2.8 Troubleshooting

The camera adaptor also supports a troubleshooting. If there are problems, you can force the

adaptor to write the workflow into a log file by creating a file called sc2_imaq_adaptor.log in the

following directory:

Windows <systemdisc>:\ProgramData\pco\

Linux /.pco/pco_logging

pco.matlab Chapter 2

pco.matlab user manual 1.19.1 13

vid = videoinput(‘pcocameraadaptor_r2022b‘,0);

src = getselectedsource(vid);

src.TMTimestampMode = ‚BinaryAndAscii‘;

triggerconfig(vid, ‚immediate‘);

vid.FramesPerTrigger = 100;

start(vid);
images = getdata(vid);

implay(images);

3 Flim package

The pco.matlab flim package contains a complete set of MATLAB functions to cover a pco.flim

workflow.

3.1 Flim introduction

A function to rearrange the raw data recorded with the pco.flim in a general linear phase sequence

is also provided. Please refer to the pco.flimwhite paper for detailed explanations andmathematical

descriptions.

The functions in section 3.2.1 were designed to be independent from the used MATLAB version.

Nevertheless, the MATLAB version 2017a or higher in conjunction with the Image Processing

Toolbox and the Image Acquisition Toolbox is recommended to benefit from the correct display

of the color bars in the lifetime figures when using the example functions in sections 3.2.2 and

3.2.3.

3.2 File organization

Each MATLAB function is encapsulated into one file whose filename equals the function name.

The directory flim_functions provides general FLIM functions. The directories flim_example_file

and flim_example_memory provide examples incorporating these general functions.

3.2.1 Flim functions

The following functions were designed to be used as independent modules which represent the

separate steps in the computation of FLIM images. Such steps are the rearrangement of phase

images recorded with the pco.flim in a linear phase image stack, the computation of modulation

depth and phase images, the referencing procedure to cancel influences induced by themeasurement

setup, and the computation of lifetime images.

If applicable, all functions offer either distinctmodulation depth and phase images or their combination

in the form of complex phasors as intermediate or final results.

pco.matlab Chapter 3

pco.matlab user manual 1.19.1 14

vid = videoinput(‘pcocameraadaptor_r2022b‘,0);

src = getselectedsource(vid);

src.TMTimestampMode = ‚BinaryAndAscii‘;

triggerconfig(vid, ‚immediate‘);

vid.FramesPerTrigger = 100;

start(vid);
images = getdata(vid);

implay(images);

3.2.1.1 flim_rearrange_stack

Description Takes a stack of raw images acquired by the pco.flim and generates a sequence of linearly ascending

phase images. The output stack of linear ascending phase images can then be processed by flim_-

numeric_harmonic_analysis.m to compute specified harmonic for each pixel.

Supported

camera type(s)

pco.flim

Prototype
function imgStack = flim_rearrange_stack (

imgStackRaw, //in

phaseNumber, //in

addPhaseSampling, //in

phaseOrder, //in

tapSelection, //in

asymCorrection //in

);

Parameter Name Description

imgStackRaw 3D image stack recorded with the pco.flim camera.

phaseNumber ’shiftablePair’, ’02’, ’04’, ’08’, ’16’.

addPhaseSampling ’no’, ’yes’.

phaseOrder ’ascending’, ’opposite’.

tapSelection ’Tap A’, ’Tap B’, ’Tap A+B’.

asymCorrection ’on’, ’off’.

Return value Name Description

imgStack 3D image stack of linearly ascending phases.

pco.matlab Chapter 3

pco.matlab user manual 1.19.1 15

vid = videoinput(‘pcocameraadaptor_r2022b‘,0);

src = getselectedsource(vid);

src.TMTimestampMode = ‚BinaryAndAscii‘;

triggerconfig(vid, ‚immediate‘);

vid.FramesPerTrigger = 100;

start(vid);
images = getdata(vid);

implay(images);

3.2.1.2 flim_numeric_harmonic_analysis

Description With a given sequence of linearly ascending phase images, the following function can be used to

compute the parameters of a specified harmonic for each pixel, such as the modulation index (i.e.

modulation depth), the phase and the normalized intensity (i.e. constant value). In most cases the

fundamental, i.e. the first harmonic, is computed.

A more detailed description of these parameters can be found in the pco.flim manual (subsection

FLIM setup in chapter pco.camware 4 software).

Supported

camera type(s)

pco.flim

Prototype
function [modIndex phase normInt] = flim_numeric_harmonic_analysis (

imgStack, //in

nBits, //in

nPhases, //in

harmonic //in

);

Parameter Name Description

imgStack 3D image stack containing phase information along 3rd

dimension.

nBits Bit resolution of imgStack raw intensity values.

nPhases Number of phases.

harmonic Harmonic component to be computed (1 for fundamental).

Return value Name Description

modIndex 2D modulation index image.

phase 2D phase image (in radians).

normInt 2D normalized intensity image.

pco.matlab Chapter 3

pco.matlab user manual 1.19.1 16

vid = videoinput(‘pcocameraadaptor_r2022b‘,0);

src = getselectedsource(vid);

src.TMTimestampMode = ‚BinaryAndAscii‘;

triggerconfig(vid, ‚immediate‘);

vid.FramesPerTrigger = 100;

start(vid);
images = getdata(vid);

implay(images);

3.2.1.3 flim_numeric_harmonic_analysis_phasor

Description This function equals the function in section 3.2.1.2 except that the computed modulation index

image and the phase image are combined into an image of complex values called ’phasors’. The

mathematical relationship is given by

pxy = mxye
iøxy (3.1)

with the phasor pxy, themodulation indexmxy and the phase øxy for each pixel with the coordinates

(x, y).

The advantage of complex notation is the simplification of the algebra needed for the description

of transfer functions, since MATLAB is capable of handling complex numbers.

Supported

camera type(s)

pco.flim

Prototype
function [phasor normInt] = flim_numeric_harmonic_analysis_phasor (

imgStack, //in

nBits, //in

nPhases, //in

harmonic //in

);

Parameter Name Description

imgStack 3D image stack containing phase information along 3rd

dimension.

nBits Bit resolution of imgStack raw intensity values.

nPhases Number of phases.

harmonic Harmonic component to be computed (1 for fundamental).

Return value Name Description

phasor 2D complex phasor image.

normInt 2D normalized intensity image.

pco.matlab Chapter 3

pco.matlab user manual 1.19.1 17

vid = videoinput(‘pcocameraadaptor_r2022b‘,0);

src = getselectedsource(vid);

src.TMTimestampMode = ‚BinaryAndAscii‘;

triggerconfig(vid, ‚immediate‘);

vid.FramesPerTrigger = 100;

start(vid);
images = getdata(vid);

implay(images);

3.2.1.4 flim_referencing

Description Since each single FLIM measurement is influenced by the response of the overall setup (pco.flim

camera, light source, optical pathways, cables) a reference measurement is needed to correct for

this. In most cases a photoluminescent sample with a known luminescence lifetime is used as a

reference.

The following function computes referenced modulation index and phase images using the single

results of the reference and sample measurements.

Supported

camera type(s)

pco.flim

Prototype
function [modIndex phase] = flim_referencing (

modIndexSample, //in

phaseSample, //in

modIndexRef, //in

phaseRef, //in

tauRef, //in

f //in

);

Parameter Name Description

modIndexSample 2D modulation index image of sample measurement.

phaseSample 2D phase image of sample measurement.

modIndexRef 2D modulation index image of reference measurement.

phaseRef 2D phase image of reference measurement.

tauRef Time constant of reference system (in seconds).

f Modulation frequency (in Hertz).

Return value Name Description

modIndex Referenced 2D modulation index in image.

phase Referenced 2D phase image.

pco.matlab Chapter 3

pco.matlab user manual 1.19.1 18

vid = videoinput(‘pcocameraadaptor_r2022b‘,0);

src = getselectedsource(vid);

src.TMTimestampMode = ‚BinaryAndAscii‘;

triggerconfig(vid, ‚immediate‘);

vid.FramesPerTrigger = 100;

start(vid);
images = getdata(vid);

implay(images);

3.2.1.5 flim_referencing_phasor

Description This function equals the function in section 3.2.1.4 except that phasor images are used as input

parameters and return value.

Supported

camera type(s)

pco.flim

Prototype
function phasor = flim_referencing_phasor (

phasorSample, //in

phasorRef, //in

tauRef, //in

f //in

);

Parameter Name Description

phasorSample 2D complex phasor image of sample measurement.

phasorRef 2D complex phasor image of reference measurement.

tauRef Time constant of reference system (in seconds).

f Modulation frequency (in Hertz).

Return value Name Description

phasor Referenced 2D complex phasor image.

pco.matlab Chapter 3

pco.matlab user manual 1.19.1 19

vid = videoinput(‘pcocameraadaptor_r2022b‘,0);

src = getselectedsource(vid);

src.TMTimestampMode = ‚BinaryAndAscii‘;

triggerconfig(vid, ‚immediate‘);

vid.FramesPerTrigger = 100;

start(vid);
images = getdata(vid);

implay(images);

3.2.1.6 flim_get_lifetimes

Description Assuming that themeasured samples can be characterized by first-order low-pass systems (monoexponential

behavior) their single time constants (lifetimes) can be computed by means of the (referenced)

modulation indices and phases using the following function.

Supported

camera type(s)

pco.flim

Prototype
function [mLifetime pLifetime] = flim_get_lifetimes (

modIndex, //in

phase, //in

f //in

);

Parameter Name Description

modIndex 2D modulation index image.

phase 2D phase image (in radians).

f Modulation frequency (in Hertz).

Return value Name Description

mLifetime 2D lifetime image based on the modulation index (in

seconds).

pLifetime 2D lifetime image bsaed on the phase (in seconds).

pco.matlab Chapter 3

pco.matlab user manual 1.19.1 20

vid = videoinput(‘pcocameraadaptor_r2022b‘,0);

src = getselectedsource(vid);

src.TMTimestampMode = ‚BinaryAndAscii‘;

triggerconfig(vid, ‚immediate‘);

vid.FramesPerTrigger = 100;

start(vid);
images = getdata(vid);

implay(images);

3.2.1.7 flim_get_lifetimes_phasor

Description This function equals the function in section 3.2.1.6 except that a phasor image is used as input

parameter.

Supported

camera type(s)

pco.flim

Prototype
function [mLifetime pLifetime] = flim_get_lifetimes_phasor (

phasor, //in

f //in

);

Parameter Name Description

phasor 2D complex phasor image.

f Modulation frequency (in Hertz).

Return value Name Description

mLifetime 2D lifetime image based on the modulation index (in

seconds).

pLifetime 2D lifetime image bsaed on the phase (in seconds).

pco.matlab Chapter 3

pco.matlab user manual 1.19.1 21

vid = videoinput(‘pcocameraadaptor_r2022b‘,0);

src = getselectedsource(vid);

src.TMTimestampMode = ‚BinaryAndAscii‘;

triggerconfig(vid, ‚immediate‘);

vid.FramesPerTrigger = 100;

start(vid);
images = getdata(vid);

implay(images);

3.2.2 Example using multi-tiff files

Description The following function incorporates the functions mentioned in section 3.2.1 to demonstrate a

complete FLIM workflow using multi-TIFF files as raw input. In addition to the input parameters

described in that section there are parameters to specify the reference and sample files containing

the raw data as well as displaying options for the results. After the completion of the FLIM

computation a normalized intensity image and two lifetime images based on the modulation index

and phase are displayed.

Supported

camera type(s)

pco.flim

Prototype
function flim_example_file (

refFileName, //in

sampleFileName, //in

f, //in

tauRef, //in

nPhases, //in

nBits, //in

bitAlignDiv, //in

phaseNumber, //in

addPhaseSampling, //in

phaseOrder, //in

tapSelection, //in

asymCorrection, //in

dispMinLifetime, //in

dispMaxLifetime //in

);

Parameter

(excerpt)
Name Description

refFileName Filename of reference image stack.

sampleFileName Filename of sample image stack.

dispMinLifetime Minimum lifetime for display (in seconds).

dispMaxLifetime Maximum lifetime for display (in seconds).

A script which calls the above function with predefined parameters and input filenames is provided

by the following file:

flim_example_file_script.m

pco.matlab Chapter 3

pco.matlab user manual 1.19.1 22

vid = videoinput(‘pcocameraadaptor_r2022b‘,0);

src = getselectedsource(vid);

src.TMTimestampMode = ‚BinaryAndAscii‘;

triggerconfig(vid, ‚immediate‘);

vid.FramesPerTrigger = 100;

start(vid);
images = getdata(vid);

implay(images);

3.2.3 Example using matlab memory data

Description In case the raw image stacks containing the phase images are already available in the MATLAB

memory, e.g. recorded by means of the Image Acquisition Toolbox in conjunction with the

pco.matlab adaptor, the following function can be used to compute and display the FLIM results

in a simple way. The computation workflow is the same as in section 3.2.2.

Supported

camera type(s)

pco.flim

Prototype
function flim_example_memory (

refRawStack, //in

sampleRawStack, //in

f, //in

tauRef, //in

nPhases, //in

nBits, //in

phaseNumber, //in

addPhaseSampling, //in

phaseOrder, //in

tapSelection, //in

asymCorrection, //in

dispMinLifetime, //in

dispMaxLifetime //in

);

Parameter

(excerpt)
Name Description

refRawStack Reference raw image stack.

sampleRawStack Sample raw image stack.

A typical call in the MATLAB console using the data recorded with the Image Acquisition Toolbox

could look like this:

flim_example_memory(permute(refStack(:, :, 1, :), [1 2 4 3]), permute←↩
(...

sampleStack(:, :, 1, :), [1 2 4 3]), 1E6, 4E-9, 8, 14, '08', 'yes',

...'ascending', 'Tap A+B', 'off', 0, 10E-9)

As all input stacks must be three-dimensional the four-dimensional access is based on how the

toolbox stores gray value images in a sequence.

pco.matlab Chapter 3

pco.matlab user manual 1.19.1 23

vid = videoinput(‘pcocameraadaptor_r2022b‘,0);

src = getselectedsource(vid);

src.TMTimestampMode = ‚BinaryAndAscii‘;

triggerconfig(vid, ‚immediate‘);

vid.FramesPerTrigger = 100;

start(vid);
images = getdata(vid);

implay(images);

4 SDK example scripts

The pco.matlab scripts provide a collection of example m-files.

The necessary binary-files and additional header files are included.

The script files contain examples for camera setup, grabbing images to a MATLAB image stack

and displaying them in a figure window. There are also examples, which show how to work with

the pco.recorder from script file.

Only a subset of all possible camera settings is covered by the examples. For further setup see

the pco.sdk description.

When working on a 64 bit Windows system a C-compiler must be installed to enable MATLAB to

use external libraries. See also http://de.mathworks.com/support/compilers/current_release/.

To run the example code open MATLAB and select the install directory.

Call the script setup_files to copy the following files (could also be done manually):

• Copy the binary files from the runtime\bin64 (64 bit) directory to the install directory.

• Copy the header files from the runtime\include directory to the install directory.

• Depending on the installed MATLAB version copy the pco_uint.m and pco_uinterr.m from

the ver_7 or ver_8 directory.

• Call pco_camera_create_deffile.m, which will create a pco_camera_def.txt file with header

definitions.

All m-files whose names start with pco_camera have subfunctions included, which can be used in

other files or also standalone.

All m-files whose names start with pco_sdk_example are examples with different functionality.

All files include helptext which can be shown with the MATLAB command help.

i.e. help pco_sdk_example_stack

All scripts output some text to the command window using MATLAB disp() function to show

processing steps and give some information. This helps to evaluate the correct behavior of camera

and script code.

A short description of the example files follows.

pco.matlab Chapter 4

pco.matlab user manual 1.19.1 24

http://de.mathworks.com/support/compilers/current_release/

vid = videoinput(‘pcocameraadaptor_r2022b‘,0);

src = getselectedsource(vid);

src.TMTimestampMode = ‚BinaryAndAscii‘;

triggerconfig(vid, ‚immediate‘);

vid.FramesPerTrigger = 100;

start(vid);
images = getdata(vid);

implay(images);

4.1 General

All m-files use a common structure glvar.

By setting the variables of this structure different behaviour of loading/unloading SDK library and

open/close of the camera can be accomplished.

All example code was tested with different MATLAB versions in 64 bit.

When writing your own m-files it might happen that MATLAB stops due to syntax or other error.

Therefore all examples are built with MATLAB exception handling, which on error does close the

camera, unloads the sc2_cam library and the pco_recorder library, and shows the error source.

Use pco_reset_camlib and/or pco_reset_recorder to initialize the libraries again.

4.2 SDK examples

The pco_sdk examples show how to setup and use the pco.sdk API within MATLAB.

For a simple test call pco_camera_info.m m-file:

pco_camera_info();

This should output some messages about camera type and camera revisions.

pco.matlab Chapter 4

pco.matlab user manual 1.19.1 25

vid = videoinput(‘pcocameraadaptor_r2022b‘,0);

src = getselectedsource(vid);

src.TMTimestampMode = ‚BinaryAndAscii‘;

triggerconfig(vid, ‚immediate‘);

vid.FramesPerTrigger = 100;

start(vid);
images = getdata(vid);

implay(images);

4.2.1 PCO_sdk_example_single

Description Grab and display a single image with selectable trigger mode and exposure time.

pco_sdk_example_single() uses subfunctions from pco_camera_() and draw_image().

Supported

camera type(s)

All cameras

Prototype
function [errorCode, ima] = PCO_sdk_example_single (

exposure_time, //in

triggermode //in

);

Parameter Name Description

exposure_time Camera exposure time in ms (default=10 ms).

triggermode Camera trigger mode (default=AUTO).

Return value Name Description

errorCode 0 in case of success, error code otherwise.

ima grabbed image.

4.2.2 PCO_sdk_example_swtrig

Description Grab and display a single software triggered image with selectable exposure time.

pco_sdk_example_swtrig() uses direct SDK calls and imshow().

Supported

camera type(s)

All cameras

Prototype
function [errorCode] = PCO_sdk_example_swtrig (

exposure_time //in

);

Parameter Name Description

exposure_time Camera exposure time in ms (default=10 ms).

Return value Name Description

errorCode 0 in case of success, error code otherwise.

pco.matlab Chapter 4

pco.matlab user manual 1.19.1 26

vid = videoinput(‘pcocameraadaptor_r2022b‘,0);

src = getselectedsource(vid);

src.TMTimestampMode = ‚BinaryAndAscii‘;

triggerconfig(vid, ‚immediate‘);

vid.FramesPerTrigger = 100;

start(vid);
images = getdata(vid);

implay(images);

4.2.3 PCO_sdk_example_live_getima

Description Start camera, grab and display images in a loop.

pco_sdk_example_live_getima does use subfunctions from pco_camera_() and draw_image

() and grab with SDK-function PCO_GetImageEx with a single buffer.

Supported

camera type(s)

All cameras

Prototype
function [errorCode] = PCO_sdk_example_live_getima (

looptime, //in

exposure_time, //in

triggermode //in

);

Parameter Name Description

looptime Time the loop is running in seconds (default=10 seconds).

exposure_time Camera exposure time in ms (default=10 ms).

triggermode Camera trigger mode (default=AUTO).

Return value Name Description

errorCode 0 in case of success, error code otherwise.

pco.matlab Chapter 4

pco.matlab user manual 1.19.1 27

vid = videoinput(‘pcocameraadaptor_r2022b‘,0);

src = getselectedsource(vid);

src.TMTimestampMode = ‚BinaryAndAscii‘;

triggerconfig(vid, ‚immediate‘);

vid.FramesPerTrigger = 100;

start(vid);
images = getdata(vid);

implay(images);

4.2.4 PCO_sdk_example_live_add

Description Start camera, grab and display images in a loop.

pco_sdk_example_live_add uses subfunctions from pco_camera_() and draw_image ()

and grab images with SDK-function PCO_AddBuffer and PCO_WaitforBufferwith four buffers.

Supported

camera type(s)

All cameras

Prototype
function [errorCode] = PCO_sdk_example_live_add (

looptime, //in

exposure_time, //in

triggermode //in

);

Parameter Name Description

looptime Time the loop is running in seconds (default=10 seconds).

exposure_time Camera exposure time in ms (default=10 ms).

triggermode Camera trigger mode (default=AUTO).

Return value Name Description

errorCode 0 in case of success, error code otherwise.

pco.matlab Chapter 4

pco.matlab user manual 1.19.1 28

vid = videoinput(‘pcocameraadaptor_r2022b‘,0);

src = getselectedsource(vid);

src.TMTimestampMode = ‚BinaryAndAscii‘;

triggerconfig(vid, ‚immediate‘);

vid.FramesPerTrigger = 100;

start(vid);
images = getdata(vid);

implay(images);

4.2.5 PCO_sdk_example_stack

Description Grab images from a streaming camera directly to an image stack.

The image_stack is transposed before returned to workspace.

The returned image_stack can be displayed with one of the draw_images functions.

Supported

camera type(s)

All cameras

Prototype
function [errorCode, ima_stack, metastructs] = PCO_sdk_example_stack ←↩

(

imacount, //in

exposure_time, //in

triggermode //in

);

Parameter Name Description

imacount Number of images to grab.

exposure_time Camera exposure time in ms (default=10 ms).

triggermode Camera trigger mode (default=AUTO).

Return value Name Description

errorCode 0 in case of success, error code otherwise.

ima_stack Stack with ’imacount’ images.

metastructs Stack with ’imacount’ structures of type PCO_-

METADATA_STRUCT, if metadata are available and

enabled.

pco.matlab Chapter 4

pco.matlab user manual 1.19.1 29

vid = videoinput(‘pcocameraadaptor_r2022b‘,0);

src = getselectedsource(vid);

src.TMTimestampMode = ‚BinaryAndAscii‘;

triggerconfig(vid, ‚immediate‘);

vid.FramesPerTrigger = 100;

start(vid);
images = getdata(vid);

implay(images);

4.2.6 PCO_sdk_example_read

Description Grab images into camera internal memory and readout afterwards. The pco_sdk_example_read

() uses subfunctions from pco_camera_(). Read is done with SDK-functions PCO_AddBuffer

and PCO_WaitforBuffer with four buffers.

Supported

camera type(s)

All cameras with internal memory

Prototype
function [errorCode, ima_stack, metastructs] = PCO_sdk_example_read (

imacount, //in

segment, //in

exposure_time, //in

triggermode //in

);

Parameter Name Description

imacount Number of images to grab.

segment Segment to use for grab and readout (default=1).

exposure_time Camera exposure time in ms (default=10 ms).

triggermode Camera trigger mode (default=AUTO).

Return value Name Description

errorCode 0 in case of success, error code otherwise.

ima_stack Stack with ’imacount’ images.

metastructs Stack with ’imacount’ structures of type PCO_-

METADATA_STRUCT, if metadata are available and

enabled.

pco.matlab Chapter 4

pco.matlab user manual 1.19.1 30

vid = videoinput(‘pcocameraadaptor_r2022b‘,0);

src = getselectedsource(vid);

src.TMTimestampMode = ‚BinaryAndAscii‘;

triggerconfig(vid, ‚immediate‘);

vid.FramesPerTrigger = 100;

start(vid);
images = getdata(vid);

implay(images);

4.3 Recorder examples

The pco.recorder is built on top of the SDK and forms an API with reduced amount of functions to

simplify acquiring and retrieving images compared to the raw pco_sdk functions. The pco_sdk_-

recorder examples show how to setup and use the pco.recorder API within MATLAB.

4.3.1 PCO_sdk_example_recorder

Description Set variables and grab images with the pco.recorder from a single pco.camera. The camera is

opened within pco.sdk before the recorder functions are called. When recording has been done,

imagedata is copied from recorder memory to a MATLAB array.

Supported

camera type(s)

All cameras

Prototype
function [errorCode, ima_stack] = PCO_sdk_example_recorder (

imacount, //in

exposure_time, //in

triggermode //in

);

Parameter Name Description

imacount Number of images to grab.

exposure_time Camera exposure time in ms (default=10 ms).

triggermode Camera trigger mode (default=AUTO).

Return value Name Description

errorCode 0 in case of success, error code otherwise.

ima_stack Stack with ’imacount’ images.

pco.matlab Chapter 4

pco.matlab user manual 1.19.1 31

vid = videoinput(‘pcocameraadaptor_r2022b‘,0);

src = getselectedsource(vid);

src.TMTimestampMode = ‚BinaryAndAscii‘;

triggerconfig(vid, ‚immediate‘);

vid.FramesPerTrigger = 100;

start(vid);
images = getdata(vid);

implay(images);

5 About Excelitas PCO

PCO, an Excelitas Technologies® Corp. brand, is a leading specialist and Pioneer in Cameras

and Optoelectronics with more than 30 years of expert knowledge and experience of developing

and manufacturing high-end imaging systems. The company’s cutting edge sCMOS and high-

speed cameras are used in scientific and industrial research, automotive testing, quality control,

metrology and a large variety of other applications all over the world.

The PCO® advanced imaging concept was conceived in the early 1980s by imaging pioneer, Dr.

Emil Ott, who was conducting research at the Technical University of Munich for the Chair of

Technical Electrophysics. His work there led to the establishment of PCO AG in 1987 with the

introduction of the first image-intensified camera followed by the development of its proprietary

Advanced Core technologies which greatly surpassed the imaging performance standards of the

day.

Today, PCO continues to innovate, offering awide range of high-performance camera technologies

covering scientific, high-speed, intensified and FLIM imaging applications across the scientific

research, industrial and automotive sectors.

Acquired by Excelitas Technologies in 2021, PCO represents a world renowned brand of high-

performance scientific CMOS, sCMOS, CCD and high-speed cameras that complement Excelitas’

expansive range of illumination, optical and sensor technologies and extend the bounds of our

end-to-end photonic solutions capabilities.

pco.matlab Chapter 5

pco.matlab user manual 1.19.1 32

postal address:

telephone:

e-mail:

web:

Excelitas PCO GmbH
Donaupark 11
93309 Kelheim, Germany

+49 (0) 9441 2005 0

pco@excelitas.com

www.excelitas.com/pco

	Introduction
	Installation

	Adapter for Matlab Image Acquisition Toolbox
	Adapter Setup
	Matlab Image Acquisition GUI
	Related manuals
	Explorer Toolbar
	CONFIGURE FORMAT
	LOGGING
	SNAPSHOT
	RECORD
	Additional Sections

	Device Properties
	Overview
	Annotations

	Triggering
	Region of interest
	Troubleshooting

	Flim package
	Flim introduction
	File organization
	Flim functions
	flim_rearrange_stack
	flim_numeric_harmonic_analysis
	flim_numeric_harmonic_analysis_phasor
	flim_referencing
	flim_referencing_phasor
	flim_get_lifetimes
	flim_get_lifetimes_phasor

	Example using multi-tiff files
	Example using matlab memory data

	SDK example scripts
	General
	SDK examples
	PCO_sdk_example_single
	PCO_sdk_example_swtrig
	PCO_sdk_example_live_getima
	PCO_sdk_example_live_add
	PCO_sdk_example_stack
	PCO_sdk_example_read

	Recorder examples
	PCO_sdk_example_recorder

	About Excelitas PCO

