user manual

pCco.csharp

EXCELITAS PCO.

TECHNOLOGIES®

An Excelitas Technologies Brand

pco.csharp

Excelitas PCO GmbH asks you to carefully read and follow the instructions in this document.
For any questions or comments, please feel free to contact us at any time.

telephone:

fax:

c O postal address:
|

An Excelitas Technologies Brand email:

web:

pco.csharp user manual 1.0.1
Released February 2024
©Copyright Excelitas PCO GmbH

@00

+49 (0) 9441 2005 50
+49 (0) 9441 2005 20

Excelitas PCO GmbH
Donaupark 11
93309 Kelheim, Germany

pco@excelitas.com

www.pco.de

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License. To
view a copy of this license, visit http://creativecommons.org/licenses/by-nd/4.0/ or send a letter to Creative

Commons, PO Box 1866, Mountain View, CA 94042, USA.

pco.csharp user manual 1.0.1 pco.

mailto:pco@excelitas.com
https://www.pco.de/
http://creativecommons.org/licenses/by-nd/4.0/

pco.csharp

Contents
1 General 5
1.1 Installation L e 5
1.2 BasicUsage e e 6
1.3 RecorderModes e 7
1.4 Image Formats e 9
1.5 ErrorHandling e e 9
2 API Documentation 10
2.1 peo.Camera. e e 10
211 Constructor L e e e 11
2.1.2 Destructor e e 11
21.3 isRecording e 11
2.1.4 isColored e e 12
2.1.5 getDescription L e e 12
2.1.6 defaultConfiguration 12
2.1.7 getConfiguration L e e 13
2.1.8 setConfiguration 13
2.1.9 getExposureTime e e e e 14
2.1.10 setExposureTime e e e e e e e 14
2111 getDelayTime e e e 14
2112 setDelayTime o e e e 14
2143 record . .. L e e e 15
2.1.14 stop e e e e e 15
2.1.15 waitForFirstimage L e e 15
2.1.16 waitForNewlmage e 16
2.1.17 getRecordedimageCount e 16
2.1.18 getConvertControl e e 17
2.1.19 setConvertControl e e e 17
2120 loadLut e e e e 18
2.1.21 adaptWhiteBalance 18
2.1.221Mage e e e e e 19
2123 10MAages e e e e e 20
2.1.24 IMageAverage i e e e e e e 21
2.1.25 hasRam L e e 22
2.1.26 switchToCamRam e e 22
2.1.27 setCamRamAllocation e 22
2.1.28 getCamRamSegment e 23
2.1.29 getCamRamMaximages e e 23
2.1.30 getCamRamNumImages it i e e e e 23
2.1.31 getConv L e e e e e e e e e 23
2.1.82 ACCESSOIS . . . o o ot it e e e e e e e e e e e 24
2.1.32.1 cameraName e e e e 24
2.1.32.2 cameraSerial e e 24
218323 sAK . . . e 24
21324 reC . . . e e e 24
2.2 pco.dmage. e e e e e e 25
2.3 pco.Camera_Exception e 25
2.4 SHUCES e 27
241 BIiNNING L e e e e 27
242 Roi. . . 27
2.4.3 Configuration e e e e e 27
2.4.4 Description e e e e 28

pco.csharp user manual 1.0.1 pco. 3

pco.csharp

2.4.5 ConvertControl e e e e 29

3 About Excelitas PCO 32

pco.csharp user manual 1.0.1 pco. 4

pco.csharp W, o 3 i TN Chapter 1

1 General

The pco.csharp package is powerful and easy to use high level C# Software Development Kit
(SDK) for working with PCO cameras. It contains everything needed for camera setup, image
acquistion, readout and color conversion.

The high-level C# class architecture makes it very easy to integrate PCO cameras into your own
software, while still having access to the underlying pco.sdk and pco.recorder interface for a
detailed control of all possible functionalities.

1.1 Installation

Download the Windows installer, unzip it and execute it. Simply follow the steps in the installer.
In your install directory you will find:

e A visual studio (2019) solution file for all provided examples

e A samples folder containing all example projects

e The pco folder containing the actual sources of this sdk, i.e the classes and defines described
in this document.

It also contains apco_csharp.csproj which generates a library from those sources. Additionally
it contains subfolders for the wrapped functions from the underlying SDK’s

- pco.convert: Export functions, structures and defines from the pco.convert library
- pco.sdk: Export functions, structures and defines from the pco.sdk library
- pco.recorder: Export functions, structures and defines from the pco.recorder library

¢ A bin folder containing the required library and runtime DIl's

pco.csharp user manual 1.0.1 pco. 5

pco.csharp W, o 3 i TN Chapter 1

1.2 Basic Usage

For a simple integration of this sdk, there is a pco_csharp.csproj insided the pco folder. This
includes the sources and builds a class library from it.

So for your application you can simply add this project to your Visual Studio solution and refer to
it. With this you can simply import the namespaces with the using directive like it is shown in the
example code below.

The pco_csharp_sample.sln shows how this can be done.

using pco;

using pco.recorder;
using pco.sdk;

using System;

using System.Threading;

class Program
{
static void Main (string[] args)
{
try
{
pco.Camera cam = new pco.Camera();
pco.Image img = new pco.Image();

cam.setExposureTime (0.01) ;

cam.record (10, pco.RecordMode.sequence) ;
cam.image (img, 1, pco.DataFormat.BGRS8)
}
catch (pco.Camera Exception ex)
{
Console.WriteLine (ex) ;
if (ex.error Code != 0)
Console.WriteLine ("0x{0:X}", ex.error Code);
}
catch (Exception ex)
{
Console.WriteLine ("Unknown Exception caught.");
Console.WritelLine (ex) ;

This snippet shows the basic usage.

As soon as a Camera object is created, a camera is searched, opened and initialized. There are
several functions to adjust the camera settings. Here we set the exposure time to 10 ms using
cam.setExposureTime. Calling record () will start the recording. Depending on the recorder
mode, the function either waits until record is finished (like for sequence mode which is selected
here) or directly returns (see 1.3 for the full list of available modes).

The Image class handles the image data, i.e. it enables you to easily get the data either as 16 bit
raw image or in various color and monochrome formats (see 1.4 for the full list of available formats).

pco.csharp user manual 1.0.1 pco. 6

pco.csharp W, o 3 i TN Chapter 1

With the image / images / imageAverage functions you can get the recorded images in several
different formats.

Here we want to have the image with index 1 in the BGRS8 format.

1.3 Recorder Modes

Depending on your workflow you can choose between different recording modes.

Some modes are blocking, i.e. the record function waits until recording is finished, some are
non-blocking.

Some modes store images in memory, other save images directly to file(s) on the disk and some
are recording and reading directliy into and from camera internal memory. However, for all modes,
the recorded images can be accessed in the same way, just as they would be in memory.

Mode Storage ' Blocking | Description |

sequence Memory yes Record a sequence of
images

sequence non blocking Memory no Record a sequence of

images, do not wait until
record is finished

ring buffer Memory no Continuously record
images in a ringbuffer,
once the buffer is full, old
images are overwritten

fifo Memory no Record images in fifo
mode, i.e. you will always
read images sequentially
and once the buffer is full,
recording will pause until
older images have been
read

sequence _dpcore Memory yes Same as sequence,
but with DotPhoton
preparation enabled

sequence non blocking dpcore | Memory no Same as
sequence non blocking
, but with DotPhoton
preparation enabled

ring buffer dpcore Memory no Same as ring buffer,
but with DotPhoton
preparation enabled

fifo dpcore Memory no Same as fifo, but with
DotPhoton preparation
enabled

tif File no Record images directly
as tif files

Continued on next page

'Depending on the camera

pco.csharp user manual 1.0.1 pco. 7

pco.csharp o, Yo IR Chapter 1

Continued from previous page

Mode Storage Blocking | Description |

multitif File no Record images directly
as one or more multitiff
file()s

pcoraw File no Record images directly
as one pcoraw file

dicom File no Record images directly
as dicom files

multidicom File no Record images directly
as one or more multi-
dicom file(s)

camram_segement Camera RAM | no Record images to camera

memory. Stops when
segment is full

camram_ring Camera RAM | no Record images to camera
memory. Ram segment
is used as ring buffer

In the code the recorder mode is represented as an enum type:

public enum RecordMode : ushort

{
sequence, sequence non blocking, ring buffer, fifo,
sequence_dpcore, sequence non blocking dpcore,
ring buffer dpcore, fifo dpcore,
tif, multitif, pcoraw, bl6, dicom, multidicom,
camram ring, camram segment

}i

Note For moreinformation on the DotPhoton preparation and image compression, please visit DotPhoton
or feel free to contact us.

pco.csharp user manual 1.0.1 pco. 8

https://www.dotphoton.com/

pco.csharp oy v, 8 B Chapter 1

1.4 Image Formats

In addition to the standard 16 bit raw image data you can also get images in different formats,
shown in the table below.

The format is selected when calling the image / images / imageAverage functions (see 2.1.22,
2.1.23, 2.1.24) of the camera class. The image data is stored in an Image object, which enables
you to access both the the raw data and the image data in the selected format.

Format Description

Mono8 Get image as 8 bit grayscale data

Monol6 | Getimage as 16 bit grayscale/raw data

BGRS Get image as 24 bit color data in bgr format

BGRAS Get image as 32 bit color data (with alpha channel) in bgra format

BGR16 Get image as 48 bit color data in bgr format (only possible for color cameras)

In the code the data format is represented as an enum type:

public enum DataFormat : ushort

{
Undefined,

Mono8,

Monol6,

BGRS,

BGRAS,

BGR16,
CompressedMono8

}:

Note For monochrome cameras, the BGR16 format is not available and the colors in the BGR8/ BGRAS
depend on the selected lut, which is a standard grayscale mapping by default. For selecting
different lut files you can use the functions setConvertControl (see 2.1.19) or loadlut (see
2.1.20) from the camera class.

1.5 Error Handling

In the example in 1.2, the code is surrounded by a try-catch block.
Error handling works this way:

e The underlying SDKs (pco.sdk, pco.recorder, pco.convert) have a C-API which provides
error codes as return values of the exported functions

* The Cameraand Image classes in this package use the Camera Exception classtotransform
those error codes into an exception

¢ This exception is then thrown by the class in case something goes wrong

For robust programs we recommend to always surround code, where Camera and Image class
functions are used, with a try-catch and react on the error in the catch block.

Additionally you can also enable the logging of the underlying SDK’s. For more information on that
please visit our pco.logging page.

pco.csharp user manual 1.0.1 pco.

https://www.excelitas.com/product/pco-add-on-software

pco.csharp ey 3 i BN Chapter 2

2 APl Documentation

The pco.csharp package consists of 3 different classes:
® pco.Camera is the main class for controlling the camera, acquiring and reading images

® pco.Image is the class for handling the image data. Images can have various formats, but
the raw data is also available

® pco.Camera_ Exceptionisanexception class for mapping PCO error codesto Exception
objects

2.1 pco.Camera
This section describes the functions of the Camera class. The following list provides a short
overview of the most important functions:
¢ Constructor Open and initialize a camera with its default configuration
¢ Destructor Close the camera and clean up everything
¢ defaultConfiguration() Set default configuration to the camera
¢ getConfiguration() Get current camera configuration
¢ setConfiguration() Set a new configuration to the camera
¢ getExposureTime() Get current exposure time
¢ setExposureTime() Set new exposure time to the camera
¢ record() Initialize and start the recording of images
¢ stop() Stop the current recording
¢ waitForFirstimage() Wait until the first image has been recorded
¢ waitForNewlmage() Wait until a new image has been recorded
¢ getConvertControl() Get current color convert settings
¢ setConvertControl() Set new color convert settings
¢ image() Read a recorded image
¢ images() Read a series of recorded images

¢ imageAverage() Read an averaged image (averaged over all recorded images)

pco.csharp user manual 1.0.1 pco. 10

pco.csharp v, 5 ol Chapter 2

2.1.1 Constructor

Description Initialize the camera.

Prototype Camera (Cameralnterface cam interface = Cameralnterface.Any);
Parameter Datatype Description
Cameralnterface | cam interface | Specific interface to search for cameras. If
undefined, search on all interfaces.
Note public enum CameraInterface : ushort
{
FireWire = PCO_SDK_DEFINES.PCO INTERFACE FW,
CameralinkMTX = PCO_SDK DEFINES.PCO INTERFACE CL MTX,
GenICam = PCO_SDK DEFINES.PCO_ INTERFACE GENICAM,
CameraLinkNAT = PCO_SDK DEFINES.PCO INTERFACE CL NAT,
GigE = PCO_SDK DEFINES.PCO INTERFACE GIGE,
USB = PCO_SDK DEFINES.PCO INTERFACE USB,
CameralinkME4 = PCO_SDK DEFINES.PCO INTERFACE CL ME4,
USB3 = PCO_SDK DEFINES.PCO INTERFACE USB3,
WLAN = PCO _SDK DEFINES.PCO_ INTERFACE WLAN,
CLHS = PCO _SDK DEFINES.PCO INTERFACE CLHS,
Any = PCO_CAMERA DEFINES.UNDEF W

2.1.2 Destructor

Description Close the activated camera and release the blocked resources.

Prototype Camera.Dispose () ;

Camera.close () ;

2.1.3 isRecording

Description Return the flag if a recording is currently active.

Prototype

bool isRecording() ;

Return value

Datatype | Name Description

bool recording | Flag if a recording is currently active

pco.csharp user manual 1.0.1 pco. L

pco.csharp g ¥y, 3 S o Chapter 2

2.1.4 isColored

Description Return the flag if camera is a color camera.

Prototype bool isColored();

Return value Datatype ‘ Name ‘ Description ‘

bool colored | Flag if camera is colored

2.1.5 getDescription

Description Return the description parameters of the camera.

Prototype Description getDescription();

Return value

Datatype Description

Description | description | Structure containing the camera description (see 2.4.4)

2.1.6 defaultConfiguration

Description (Re)set the camera to its default configuration.

Prototype void defaultConfiguration();

pco.csharp user manual 1.0.1 pco. 12

pco.csharp Vo, S ot TR Chapter 2

2.1.7 getConfiguration

Description Get the current camera configuration.

Prototype Configuration getConfiguration();

Return value

Datatype Description

Configuration | configuration | Structure containing the current configuration of the
camera (see 2.4.3)

2.1.8 setConfiguration

Description Set a configuration to the camera.

Prototype void setConfiguration (Configuration configqg);

Parameter

Datatype Name Description

Configuration | config | Configuration that should be set (see 2.4.3).

pco.csharp user manual 1.0.1 pco. 13

pco.csharp NS 8 o VI Chapter 2

2.1.9 getExposureTime

Description Get the current exposure time of the camera.

Prototype double getExposureTime () ;

Return value

Datatype | Name Description

double exposure time s | Exposure time of the camera [s]

2.1.10 setExposureTime

Description Set a new exposure time to the camera.

Prototype ;4 setExposureTime (double exposure time_ s);

I CUL LN Datatype ' Name Description |

double exposure time s | Exposure time [s] that should be set

2.1.11 getDelayTime

Description Get the current delay time of the camera.

Prototype double getDelayTime () ;

Return value

Datatype | Name Description

double delay time s | Delay time of the camera [s]

2.1.12 setDelayTime

Description Set a new delay time to the camera.

Prototype void setDelayTime (double delay time s);

Parameter B ySERgmm ' Name Description |

double delay time s | Delay time [s] that should be set

pco.csharp user manual 1.0.1 pco. 14

pco.csharp Vo, S ot TR Chapter 2

2.1.13 record

Description Create, configure, and start a new recorder instance. The entire camera configuration must be set
before calling record (). The commands for getting and setting delay/exposure time are the only
exception. These can be called up during the recording.

Prototype iy vccorg (

int num images = 1,
RecordMode record mode = RecordMode.sequence,
string file path = null

) ;

Parameter Datatype ‘ Name Description ‘

int num_images Sets the number of images allocated in the driver. The RAM,
disk (of the PC) or camera RAM (depending on the mode)
limits the maximum value.

RecordMode | record mode | Defines the recording mode for this record (see 1.3).

string file path Path where the image file(s) should be stored (only for modes
who directly save to file, see 1.3).

2.1.14 stop

Description Stop the current recording.

For blocking recorder modes (see 1.3), the recording is automatically stopped when the required
number of images is reached. In this case stop () is not needed

Prototype void stop();

2.1.15 waitForFirstimage

Description Wait until the first image has been recorded and is available.

Prototype void waitForFirstImage (
bool delay = true,
double timeout s = default
) ;
Parameter Datatype ‘ Name ‘ Description ‘
bool delay Flag if a small delay should be used in the waiting loop (typically

recommended to reduce CPU load)

double timeout s | If defined, the waiting loop will be aborted if no image was recorded
during timeout s seconds.

pco.csharp user manual 1.0.1 pco. 15

pco.csharp Vo, S ot TR Chapter 2

2.1.16 waitForNewimage

Description Wait until a new image has been recorded and is available (i.e. an image that has not been read

yet).
Prototype void waitForNewImage (
bool delay = true,
double timeout s = default
) ;
Parameter Datatype ‘ Name ‘ Description ‘
bool delay Flag if a small delay should be used in the waiting loop (typically

recommended to reduce CPU load)

double timeout s | If defined, the waiting loop will be aborted if no new image was
recorded during timeout s seconds.

2.1.17 getRecordedimageCount

Description Get the number of currently recorded images.

Note For recorder modes fifo and fifo dpcore (see 1.3) this represents the current fill level of the
fifo buffer, not the overall number of recorded images.
In these cases, check for if (cam.getRecordedImageCount ()> 0) to see if a new image is
available.

Prototype . . getRecordedImageCount () ;

Return value

Datatype | Name Description

UInt32 recorded image count | Number of currently recorded images

pco.csharp user manual 1.0.1 pco. 16

pco.csharp g ¥y, 3 Chapter 2

2.1.18 getConvertControl

Description Get the current convert control settings for the specified data format.

Prototype ConvertControl getConvertControl (DataFormat data format);

Parameter

Datatype Description

DataFormat | data format | Dataformat for which the convert settings should be queried.

Return value

Datatype Description

ConvertControl | convert control | Structure containing the current convert settings
for the specified data format(see 2.4.5)

2.1.19 setConvertControl

Description Set convert control settings for the specified data format.

Prototype void setConvertControl (
DataFormat data format,
ConvertControl convert control
);
Parameter Datatype Name ‘ Description ‘
DataFormat data format Data format for which the convert settings should
be set.
ConvertControl | convert control | Convert control settings that should be set.
Example

pco.ConvertControl conv _ctrl = getConvertControl (pco.DataFormat.BGR8) <«
if (conv_ctrl is ConvertControlPseudoColor)
{
ConvertControlPseudoColor cc = (ConvertControlPseudoColor) (<
conv_ctrl);
cc.lut file = lut file;
cam.setConvertControl (pco.DataFormat.BGR8, cc);

pco.csharp user manual 1.0.1 pco. 17

pco.csharp Vo, S ot TR Chapter 2

2.1.20 loadLut

Description Set the lut file for the convert control settings.

This is just a convenience function, the lut file could also be set using setConvertControl (see:

2.1.19).
Prototype i34 1cadLut (
DataFormat data format,
string lut file);
Parameter Datatype ‘ Name Description
DataFormat | data format | Data format for which the lut file should be set.
string lut file Actual lut file path to be set.

2.1.21 adaptWhiteBalance

Description Do a white-balance using a transferred image.

Prototype void adaptWhiteBalance (Image image, Roi roi = null);

Parameter Datatype ‘ Name ‘ Description ‘
Image image | Image that should be used for white-balance computation
Roi roi Use only the specified ROI for white-balance computation

pco.csharp user manual 1.0.1 pco. 18

pco.csharp ey 3 i BN Chapter 2

2.1.22 image

Description Get a recorded image in the given format. The type of the image is an Tmage object (see 2.2).

The Image object has to be created by the caller and transferred to the function. Internally, it
automatically checks the allocated buffer size and adapts it according to the format and ROI.
There is no special pre-allocation needed.

Performance can be increased through the definition of roi and data format or reusing the Image

object.
Prototype void image (
Image image,
uint image index = 0,
Roi roi = default,
DataFormat data format = DataFormat.Monol6,
PCO Recorder CompressionParams comp params = default
) i
Parameter Datatype ‘ Name ‘ Description ‘
Image image Image object for storing the
image
uint image index | Index of the image that
should be queried, use
PCO_RECORDER LATEST IMAGE
for latest image (for recorder
modes fifo/fifo dpcore
always use 0 (see 1.3))
Roi roi Soft ROI to be applied, i.e. get

only the ROI portion of the image
(see 2.4.2 for the Roi structure)
DataFormat data format | Data format the image should
have (see 1.4)

PCO Recorder CompressionParams | comp params Compression parameters, not
implemented yet

pco.csharp user manual 1.0.1 pco. 19

pco.csharp ey 3 i BN Chapter 2

2.1.23 images

Description Get a series of images in the given format as List. The type of the images is an Tmage object
(see 2.2).

The position of the images in the recorder to query are defined by a start index and the length of
the transferred List that should hold the images (i.e. there is no additional length parameter)

The Image List has to be created by the caller and transferred to the function. Internally, the
function automatically checks if Image Objects already exist or not. When the List is empty,
it is filled with Image Objects, otherwise the existing Image objects are updated. There is no
special pre-allocation needed. Performance can be increased through the definition of ROI and
data format of the List’s ITmage objects.

Prototype void images (
List<Image> images,
Roi roi = default,
uint start index = 0,
DataFormat data format = DataFormat.Monolé6,
PCO Recorder CompressionParams comp params = default
)i
Parameter Datatype ‘ Name ‘ Description ‘
List<Image> images A List of Image objects for storing
the images
Roi roi Soft ROI to be applied, i.e. get

only the ROI portion of the images
(see 2.4.2 for the Roi structure)

uint start_index | Index of the first image that
should be queried (the number of
images is defined by the length of
the image vector)

DataFormat data format | Data format the images should
have (see 1.4)

PCO Recorder CompressionParams | comp params | Compression parameters, not
implemented yet

pco.csharp user manual 1.0.1 pco. 20

pco.csharp v, 3 o NG Chapter 2

2.1.24 imageAverage

Description Get an averaged image, averaged over all recorded images in the given format. The type of the
image is a Image object (see 2.2).

The Image object has to be created by the caller and transferred to the function. Internally it
automatically checks the allocated buffer size and adapts it according to the format and ROI.
There is no special pre-allocation needed.

Note We recommend that you not use this function while recording is active, as it may give unexpected
results (especially in ring buffer mode, see 1.3).
Record the number of images you want to average as a sequence, then after all images have been
recorded, use this function to calculate the average.

Prototype void imageAverage (
Image image,
Roi roi = default,
DataFormat data format = DataFormat.Monolé6,
) i
Parameter Datatype ‘ Name Description ‘
Image image Image object for storing the averaged image
Roi roi Soft ROI to be applied, i.e. get only the ROI portion of the

image (see 2.4.2 for the Roi structure).
DataFormat | data format | Data format the averaged image should have (see 1.4)

pco.csharp user manual 1.0.1 pco. 21

pco.csharp NS 8 o VI Chapter 2

2.1.25 hasRam

Description Flag indicating whether camera-internal memory for recording with camram is available

Prototype bool hasRam() ;

Return value

Datatype | Name Description

bool has camram | Boolean indicating whether cam ram is available

2.1.26 switchToCamRam

Description Sets camram segment and prepare internal recorder for reading images from camera-internal

memory.
Prototype void switchToCamRam () ;

void switchToCamRam (ushort segment);
Parameter

Datatype | Name Description

ushort segment | Segment number for image readout. Optional parameter.

2.1.27 setCamRamAllocation

Description Set allocation distribution of camram segments.
Maximum number of segments is 4. Accumulated sum of parameter values must not be greater
than 100.
Prototype

void setCamRamAllocation (ArraylList percents);

Parameter

Datatype Name ‘ Description

Arraylist | percents | Array that holds percentages of segment distribution. Length: 1
<=size() <=4

pco.csharp user manual 1.0.1 pco. 22

pco.csharp =R S ~Yaohr Chapter 2

2.1.28 getCamRamSegment

Description Get segment number of active camram segment.

Prototype ushort getCamRamSegment () ;

Return value

Datatype | Name Description

ushort segment num | Number of active camram segment

2.1.29 getCamRamMaxIimages

Description Get number of images that can be stored in the active camram segment.

Prototype uint getCamRamMaxImages () ;

Return value

Datatype | Name Description

uint max image count | Maximal images for recording to active segment

2.1.30 getCamRamNumImages

Description Get number of images that are available in the active camram segment.

Prototype uint getCamRamNumImages () ;

Return value

Datatype | Name Description

uint image count | Number of images available for readout from active segment

2.1.31 getConv

Description Get the internal handle to the pco.convert API for a specific image format. This is needed whenever
you need to call special pco.convert functions directly.

Prototype IntPtr getConv (DataFormat data format);

Parameter I yrErymm. ' Name Description |

DataFormat | data format | Data format for which the convert handle should be queried.

Return value

Datatype ‘ Name Description
IntPtr conv | Handle to the pco.convert library functions

pco.csharp user manual 1.0.1 pco. 23

pco.csharp NS 8 o VI Chapter 2

2.1.32 Accessors

Accessors are function-like possibilities to get some properties of a Came ra object, which shouldn’t
be overwritten.

2.1.32.1 cameraName

Description Get the name of the camera

Prototype

string cameraName;

Return value

Datatype ‘ Name Description
string name | Camera name

2.1.32.2 cameraSerial

Description Get the serial number of the camera.

Prototype

uint cameraSerial;

Return value

Datatype ‘ Name Description
uint serial number | Camera serial number

2.1.32.3 sdk

Description Get the internal handle to the pco.sdk API. This is needed whenever you need to call special
pco.sdk functions directly.
Prototype IntPtr sdk;

Return value

Datatype ‘ Name Description
IntPtr sdk Handle to the pco.sdk library functions

2.1.32.4 rec

Description Get the internal handle to the pco.recorder API. This is needed whenever you need to call special
pco.recorder functions directly.

Prototype

IntPtr rec;

Return value

Datatype ‘ Name Description
IntPtr rec Handle to the pco.recorder library functions

pco.csharp user manual 1.0.1 pco. 24

pco.csharp v, 3 o NG Chapter 2

2.2 pco.Image
The Image class stores the data of an image. With convenient methods you can access the raw
image data, and if available, additional information such as metadata and timestamp.
The following list provides an overview of the functions:

¢ Constructor Can be called with and without camera or image-size information. If called with
image-size and data format information, the image buffer is pre-allocated according to data
format and ROI

¢ isColored() Get flag if the stored image is a color image
e getDataFormat() Get the format of the stored image

¢ width() Get width of the stored image

¢ height() Get height of the stored image

¢ validAllocation() Check pre-allocation of image buffer according the parameter data format
and ROI

¢ resize() Adapt allocation of the image buffer according to the parameter data format and ROI
¢ setRecorderimageNumber() Set number of the stored image (used in Camera class internally)
¢ getRecorderimageNumber() Get number of the stored image

¢ setMetaData() Set metadata of the stored image (used in Camera class internally)

e getMetaDataRef() Get reference to the metadata of the stored image

¢ getMetaData() Get metadata of the stored image

¢ setTimestamp() Set timestamp of the stored image (used in Camera class internally)

¢ getTimestamp() Get timestamp of the stored image

¢ getTimestampRef() Get reference to the timestamp of the stored image

¢ size() Get image size in pixel

¢ vector_8bit() Get image data as byte [] array of 8 Bit values (for 8-Bit image formats)

¢ vector_16bit() Get image data as ushort [] array of 16 Bit values (for 16-Bit image formats)

¢ raw_vector_16bit() Get raw image data as ushort [] array of 16 Bit values

2.3 pco.Camera_Exception

The Camera Exception class is derived from Exception and transforms PCO error codes into
exception objects which are thrown by the Camera class in case of an error. With this workflow
you can catch camera errors with a try-catch block just like any other Exception.

This class only introduce additional Constructors, thus it has the same set of functions as the
regular System.Exception.

The following list provides an overview of these Constructors:
e Camera_Exception(string message) Creates Exception with this message

e Camera_Exception(uint err_code) Transforms the PCO error code and creates Exception
with this error code message

pco.csharp user manual 1.0.1 pco. 25

pco.csharp oy % : i A Chapter 2

e Camera_Exception(string message, uint err_code) Transforms the PCO error code, creates
Exception with this error code message and appends it to the message

e Camera_Exception(string message, Exception inner) Appends any Exception Error message
to this message

pco.csharp user manual 1.0.1 pco. 26

Chapter 2

pco.csharp

2.4 Structs

In the following sections you will find all structures used in the Camera class.

2.4.1 Binning

Description Structure holding the binning information.

Datatype ‘ Name Description
UIntlé Vertical binning
UIntlé Horizontal binning

vert

horz

2.4.2 Roi

Description Structure holding the ROI information

Datatype ‘ Name Description

UInt64 x0 Left position of ROI (starting from 1)
UInto64 y0 Top position of ROI (starting from 1)
UInt64 x1 Right position of ROI (up to full width)
UInto64 vyl Bottom position of ROI (up to full height)

Additionally the following convenience function are available.

Datatype ‘ Name ‘ Description ‘
UInt64 width () Get width of the ROI

UInt64 height () Get height of the ROI

UInt64 size () Get overall size in pixel

UInto64 evenPaddedWidth () | Get padded width

UInt64 paddedSize () Get padded overall size

2.4.3 Configuration
Description

Datatype ‘ Name

Structure holding a camera configuration.

‘ Description

double exposure_time s Exposure time [s]

double delay time s Delay time [s]

Roi roi Hardware ROI structure (see 2.4.2)
UIntlé timestamp mode Timestamp mode

UInt32 pixelrate Pixelrate

UIntlé6 trigger mode Trigger mode

UIntlé6 acquire mode Acquire mode

pco.csharp user manual 1.0.1

Continued on next page

pco.

pco.csharp s X i TR Chapter 2

Continued from previous page

Datatype Name ' Description |
UIntlé metadata mode Metadata mode

UIntl6 | noise filter mode | Noise filter mode

Binning | binning Binning structure (see 2.4.1)

2.4.4 Description

Description Structure holding the camera description information.

Datatype ‘ Name ‘ Description ‘

UInt32 serial Serial number of the camera

UIntlé6 type Sensor type

UIntlé sub_type Sensor sub type

UIntlé6 interface type Interface type

double min exposure time s Minimal possible exposure time

double max_exposure time s Maximal possible exposure time

double min exposure step s Minimal possible exposure step

double min delay time s Minimal possible delay time

double max_delay time s Maximal possible delay time

double min delay step_ s Minimal possible delay step

UInté64 min width Minimal possible image width
(hardware ROI)

UInt64 min height Minimal possible image height
(hardware ROI)

UInt64 max_width Maximal possible image width
(hardware ROI)

UInt64 max_height Maximal possible image height
(hardware ROI)

UInté64 roi step horz Horizontal ROI stepping
(hardware ROI)

UInt64 roi step vert Vertical ROI stepping (hardware
ROI)

bool roi symmetric horz Flag if hardware ROI has to be
horizontally symmetric (i.e. if
X0 is increased, x1 has to be
decreased by the same value)

bool roi symmetric vert Flag if hardware ROl has to
be vertically symmetric (i.e. if
y0 is increased, y1 has to be
decreased by the same value)

UIntlé6 bit resolution Bit-resolution of the sensor

bool has timestamp mode Flag if camera supports the
timestamp setting

bool has timestamp mode ascii only | Flag if camera supports setting
the timestamp to ascii-only

Continued on next page

pco.csharp user manual 1.0.1 pco. 28

pco.csharp v, 3 o NG Chapter 2

Continued from previous page

Datatype ' Name Description |

List<UInt32> | pixelrate vec Vector containing all possible
pixelrate frequencies (index 0 is
default)

bool has acquire mode Flag if camera supports the
acquire mode setting

bool has ext acquire mode Flag if camera supports the
external acquire setting

bool has metadata mode Flag if metadata can be activated
for the camera

bool has ram Flag if camera has internal
memory

List<UIntl6> | binning horz vec Vector containing all possible
horizontal binning values

List<UIntl6> | binning vert vec Vector containing all possible
vertical binning values

2.4.5 ConvertControl

Description Structure containing (color) convert information.
Depending on the image format (see 1.4) a different structure will be used.

Mono8 format ConvertControlMono

Datatype ‘ Name ‘ Description ‘

bool sharpen Flag if the image should be sharpened

bool adaptive sharpen | Flag if adaptive sharpening should be enabled

bool flip vertical Flag if the image should be vertically flipped

bool auto minmax Flag if auto scale should be enabled

int min limit Minimum scaling value (will be ignored if auto scale is
enabled)

int max_limit Maximum scaling value (will be ignored if auto scale is
enabled)

double gamma Gamma of the image (default is 1.0)

int contrast Contrast of the image (default is 0)

Color camera ConvertControlColor

and color
format Datatype ‘ Name ‘ Description ‘
bool sharpen Flag if the image should be sharpened
bool adaptive sharpen Flag if adaptive sharpening should be enabled
bool flip vertical Flag if the image should be vertically flipped
bool auto minmax Flag if auto scale should be enabled
int min limit Minimum scaling value (will be ignored if auto scale
is enabled)

Continued on next page

pco.csharp user manual 1.0.1 pco. 29

pco.csharp ey 3 i BN Chapter 2

Continued from previous page

int max limit Maximum scaling value (will be ignored if auto scale
is enabled)

double gamma Gamma of the image (default is 1.0)

int contrast Contrast of the image (default is 0)

bool pco_debayer algorithm | Flag if PCO debayering should be used

int color temperature Color temperature of the image

int color saturation Color saturation of the image

int color vibrance Color vibrance of the image

int color tint Color tint of the image

BW camera ConvertControlPseudoColor

and color
format Datatype ‘ Name ‘ Description ‘

bool sharpen Flag if the image should be sharpened

bool adaptive sharpen Flag if adaptive sharpening should be enabled

bool flip vertical Flag if the image should be vertically flipped

bool auto minmax Flag if auto scale should be enabled

int min limit Minimum scaling value (will be ignored if auto scale is
enabled)

int max_limit Maximum scaling value (will be ignored if auto scale is
enabled)

double gamma Gamma of the image (default is 1.0)

int contrast Contrast of the image (default is 0)

int color temperature | Color temperature of the image

int color saturation | Color saturation of the image

int color vibrance Color vibrance of the image

int color tint Color tint of the image

string | lut file Path of the lut file that should be used

pco.csharp user manual 1.0.1 pco. 30

o
@®©
e
9
o
0
0
Q

Overview Assignment of ConvertControl structs to DataFormat and BW/colored camera

IOTODTOIFUODFIDAUOD

8vVaod

gouoppassaxdwo)

9 TOUOR

jeuxogejeq

sni3

OUOWTOIFUODJIDAUOCD

IO0TODOPNOS3dTOIFUODIFIDAUOCD

gouoppassaxdwo)

jeuxogejeq

osTez

() poxOTODST: :RIBWRD

31

pco.

pco.csharp user manual 1.0.1

pco.csharp ey 3 i BN Chapter 3

3 About Excelitas PCO

PCO, an Excelitas Technologies® Corp. brand, is a leading specialist and Pioneer in Cameras
and Optoelectronics with more than 30 years of expert knowledge and experience of developing
and manufacturing high-end imaging systems. The company’s cutting edge sCMOS and high-
speed cameras are used in scientific and industrial research, automotive testing, quality control,
metrology and a large variety of other applications all over the world.

The PCO® advanced imaging concept was conceived in the early 1980s by imaging pioneer, Dr.
Emil Ott, who was conducting research at the Technical University of Munich for the Chair of
Technical Electrophysics. His work there led to the establishment of PCO AG in 1987 with the
introduction of the first image-intensified camera followed by the development of its proprietary
Advanced Core technologies which greatly surpassed the imaging performance standards of the
day.

Today, PCO continues to innovate, offering a wide range of high-performance camera technologies
covering scientific, high-speed, intensified and FLIM imaging applications across the scientific
research, industrial and automotive sectors.

Acquired by Excelitas Technologies in 2021, PCO represents a world renowned brand of high-
performance scientific CMOS, sCMOS, CCD and high-speed cameras that complement Excelitas’
expansive range of illumination, optical and sensor technologies and extend the bounds of our
end-to-end photonic solutions capabilities.

pCO.

An Excelitas Technologies Brand

pco.csharp user manual 1.0.1 pco. 32

postal address:

telephone:
e-mail:

web:

Excelitas PCO GmbH
Donaupark 11

93309 Kelheim, Germany
+49 (0) 9441 2005 0

pco@excelitas.com

www.excelitas.com/pco

EXNXCELITAS

TECHNOLOGIES®

	General
	Installation
	Basic Usage
	Recorder Modes
	Image Formats
	Error Handling

	API Documentation
	pco.Camera
	Constructor
	Destructor
	isRecording
	isColored
	getDescription
	defaultConfiguration
	getConfiguration
	setConfiguration
	getExposureTime
	setExposureTime
	getDelayTime
	setDelayTime
	record
	stop
	waitForFirstImage
	waitForNewImage
	getRecordedImageCount
	getConvertControl
	setConvertControl
	loadLut
	adaptWhiteBalance
	image
	images
	imageAverage
	hasRam
	switchToCamRam
	setCamRamAllocation
	getCamRamSegment
	getCamRamMaxImages
	getCamRamNumImages
	getConv
	Accessors
	cameraName
	cameraSerial
	sdk
	rec

	pco.Image
	pco.Camera_Exception
	Structs
	Binning
	Roi
	Configuration
	Description
	ConvertControl

	About Excelitas PCO

