
U:\code\Projects\CaliPile_Interface - MultiSensor\CaliPile_Interface\bin\Release\example-C-code.C Montag, 22. Mai 2017 10:39

// Exemplary c-code for the CaliPile

// Presence detection with host optimization

// The code does

// - improve the adoption speed of the CaliPile

// - determine the presence of a person

// After start-up of the host system

// The person must leave and enter the field-of-view once

// for a proper operation

// Once a (thermal) instability was recognized

// by heat-up or cool-down of the sensor

// during presence sensing,

// the host system will switch to safe mode, where

// presence sensing is not possible any more

// this will be indicated by a blinking of the LED

// the code was optimized for the Excelitas Demonstration Set

// in case of a fixed mounting of the bare sensor

// please adapt all settings like filters and thresholds

// to your application conditions

// this code must be adapted for each host system

// Excelitas is not liable for the code

// All rights belong to Excelitas but the code

// can be used and modified for any CaliPile application

// free of charge

// SMBus/I2C Rx Tx Buffer for register + eeprom content

unsigned char SMB_buf[64];

// SMBUS Slave address = default 10

unsigned char slave_address;

// timer flag is on to trigger once the host optimization procedure.

// This will lead to a faster resetting of the sensor at the power-on.

// on power-on you MUST write this configuration to initialize the

// sensor properly for the host optimization procedure

// thresholds, filter settings etc. must be optimized in the application

// every application is unique and required detailed understanding and/or testing

//unsigned char register_write[32] = {0,

// 0x8D,0x0D,15,30,30,0x09,0x04,20,0xFF,0x00,0,0}; // high sensitivity

unsigned char register_write[32] = {0,

0x8B,0x0B,30,30,30,0x09,0x04,20,0xFF,0x00,0,0}; // low sensitivity

// 32 bit variables

unsigned long int TPobject;

unsigned long int TPambient;

// presence detection requires a stable environment

// once a person is in the field of view there is no way

// to distinguish between background and signal with

// a 1 channel sensor.

// Thus a stability requirement is needed for safe

-1-

U:\code\Projects\CaliPile_Interface - MultiSensor\CaliPile_Interface\bin\Release\example-C-code.C Montag, 22. Mai 2017 10:39

// absence detection.

unsigned long int TPambient_was = 0;

unsigned long int TPObjLP1;

unsigned long int TPObjLP2;

unsigned long int TPambLP3;

// those are states of the CaliPile

// used for presence detection or recognition

typedef enum Tintstatus {

STATnointerrupt=0, STATinterrupt, STATabsence,

STATpresence, STATresetting, STATsetting} intstatus;

#define MAXSTATUS 5

intstatus current_status = STATnointerrupt;

// return value: (0) = Transmission OK

// (1) = SA+W not acked

// (2) = start address not acked

// (3) = SA+R not acked

// parameters : start adress = 0...31

// length = no of bytes to read 1...32

char read_register(char start_adr, char length)

{

char status;

// here comes controller specific code for I2C communication

return(status);

}

// return value: (0) = Transmission OK

// (1) = SA not acked

// (2) = start address not acked

// (3) = SMB_wbyte(value) not acked

// parameters : start address = 0...31

// value = 0 ... 255

char write_register(char adr, char value)

{

char status;

// here comes controller specific code for I2C communication

return(status);

}

// optimize the response of the sensor by

// setting filters to fast values once an

// interrupt was detected

// determine presence with the over-temperature feature

// call this procedure in case of all CaliPile interrupts

char presence_detection()

{

char chipstatus;

char interruptstatus;

char interruptmask;

-2-

U:\code\Projects\CaliPile_Interface - MultiSensor\CaliPile_Interface\bin\Release\example-C-code.C Montag, 22. Mai 2017 10:39

char LPsettings;

char mask;

char i;

unsigned int dTPamb;

intstatus new_status;

char under_temperature_soft;

//LED = 1;

// read the chip status and

// interrupt status to reset the interrupt of the chip

// if this method is called via an interrupt, make

// sure the interrupt was not read previously

// otherwise use the chip status which may

// be not up-to-date depending on the readout speed

read_register(0, 32);

interruptstatus = SMB_buf[18]; // interrupt status + chip status

chipstatus = SMB_buf[19];

// simulate here the interrupt since interrupt pin is not used on this

board

// read the interruptmask

interruptmask = SMB_buf[25];

// compare interrupstatus with the mask like the sensor is doing it

if ((interruptstatus & interruptmask) == 0)

{

return 0;

}

// initialize the status

new_status = current_status;

// ************ ambient temperature stability condition check *****************

// determine the current ambient offset to previously registered one

TPambient = SMB_buf[10];// & mask;

TPambient <<= 8;

TPambient |= SMB_buf[11];

// divide it by 2 to get rom 16 bit to 15 bit PTAT resolution with a slope of

172 counts/K

TPambient >>= 1;

// initialize the variable the first time

if (TPambient_was == 0) TPambient_was = TPambient;

if (TPambient_was > TPambient)

dTPamb = TPambient_was - TPambient;

else

dTPamb = TPambient - TPambient_was;

if (dTPamb > 30) // did the condition change by more than ~0.2K? Please optimize

this condition for your application

{

if (current_status == STATpresence)

{

-3-

U:\code\Projects\CaliPile_Interface - MultiSensor\CaliPile_Interface\bin\Release\example-C-code.C Montag, 22. Mai 2017 10:39

// if the situation is not stable, the overtemperature limit is probably

not correct

new_status = STATresetting;

// indicate with the LED

for (i = 0; i < 3; i++)

{

LED = 0;

DEBUGPIN = 0;

delay_ms(100);

LED = 1;

DEBUGPIN = 1;

delay_ms(100);

}

}

TPambient_was = TPambient;

}

// ************ end of temperature stability condition check ******************

// use the chip status to capture the current condition

// interruptstatus = chipstatus;

// initialize the chip for first time usage after power on

if (current_status == STATnointerrupt) new_status = STATresetting;

// entrance condition to presence condition

// 1. Enter only when the new_status was not redefined by another condition

// 2. must come from the absence condition

// 3. must be identified as presence flag after interrupt

// 4. must have positive sign on presence flag

// use chip status not to miss a current condition which was not triggered

if (new_status == current_status && current_status == STATabsence

&& (chipstatus & 0x08) != 0 && (chipstatus & 0x80) == 0)

//&& (interruptstatus & 0x08) != 0 && (interruptstatus & 0x80) == 0)

{

new_status = STATpresence;

}

// entrance condition to set fast filter resetting

// 1. Enter only when the new_status was not redefined by another condition

// 2. must come from the absence condition

// 3. must be identified as presence flag after interrupt

// 4. must have negative sign on presence flag

// use chip status not to miss a current condition which was not triggered

if (new_status == current_status && current_status == STATabsence

&& (chipstatus & 0x08) != 0 && (chipstatus & 0x80) != 0)

//&& (interruptstatus & 0x08) != 0 && (interruptstatus & 0x80) != 0)

{

new_status = STATresetting;

}

// entrance condition to enter the absence status

// 1. Enter only when the new_status was not redefined by another condition

-4-

U:\code\Projects\CaliPile_Interface - MultiSensor\CaliPile_Interface\bin\Release\example-C-code.C Montag, 22. Mai 2017 10:39

// 2. Enter only when the current_status is resetting

// 3. must have presence flag (filters catched up)

// 4. Presence sign flag must indicate negative number

// use interrupt status to look into the memory of the sensor

if (new_status == current_status && current_status == STATresetting

//&& (chipstatus & 0x08) != 0 && (chipstatus & 0x80) == 0

&& (interruptstatus & 0x08) != 0 && (interruptstatus & 0x80) == 0

)

{

new_status = STATabsence;

}

// ********* check in software the under temperature condition ***********

if (current_status == STATpresence)

{

// please note: using the internal under-temperature feature to generate a

trigger

// requires the person to approach the device first

// to generate a signal which is above the threshold by 64 counts at least

// otherwise the lamp will turn off again

// this is due to the internal hysteresis

// numbers can be compared on the µC from time to time in addition which is

here reflected

under_temperature_soft = 0;

if (SMB_buf[1] < SMB_buf[28])

{

under_temperature_soft = 1;

}

if (SMB_buf[1] == SMB_buf[28] && SMB_buf[2] < SMB_buf[29])

{

under_temperature_soft = 1;

}

}

// entrance condition to enter the resetting condition

// 1. Enter only when the new_status was not redefined by another condition

// 2. Enter only when the current_status is the presence condition

// 4. Enter only when undertemperature was sensed or better

// 4. Enter only when software undertemperature was sensed

if (new_status == current_status && current_status == STATpresence

//&& (chipstatus & 0x10) != 0 // use chip status which is the up to date

condition not cleared in the interrupt register

&& under_temperature_soft != 0 // use in addition the software

undeartemperature in case of weak signals below 64 counts

)

{

new_status = STATresetting;

}

if (new_status != current_status)

{

// configuration according to the new status

-5-

U:\code\Projects\CaliPile_Interface - MultiSensor\CaliPile_Interface\bin\Release\example-C-code.C Montag, 22. Mai 2017 10:39

if (new_status == STATresetting)

{

// make the background low pass follow the filtered signal nearly with

nearly the same speed

write_register(20, 0xCD);

interruptmask = 0x08;

write_register(25, interruptmask);

// set now the presence threshold to a value of only 1 so that a sign

change

// will be triggered immediately

write_register(22, 1);

}

if (new_status == STATabsence)

{

// restore default filter settings and the threshold

write_register(20, register_write[20]);

write_register(22, register_write[22]);

// prepare the system to go to sleep and listen only to the positive

presence interrupt

// trigger on the presence feature only and put your host to sleep

interruptmask = 0x08;

write_register(25, interruptmask);

}

if (new_status == STATpresence)

{

interruptmask = 0;

// setup for presence detection via overtemperature

// store the last L1val to overtemperature for the overtemperature

feature in case of absence detection

// optionally LP2 can be used but may be less robust an absence

misinterpretation due to a warm seat or similar

// LP1 may give you a shorter distance but is more robust to sence your

absence

TPObjLP1 = 0;

TPObjLP2 = 0;

// copy first 16 bit of TPLP1 or TPLP2 to the TPOT

TPObjLP1 = SMB_buf[5];

TPObjLP1 <<= 8;

TPObjLP1 |= SMB_buf[6];

TPObjLP1 <<= 8;

TPObjLP1 |= SMB_buf[7];

TPObjLP1 >>= 4;

mask = 0x0F;

TPObjLP2 = (unsigned int)(SMB_buf[7] & mask);

TPObjLP2 <<= 8;

TPObjLP2 |= SMB_buf[8];

TPObjLP2 <<= 8;

-6-

U:\code\Projects\CaliPile_Interface - MultiSensor\CaliPile_Interface\bin\Release\example-C-code.C Montag, 22. Mai 2017 10:39

TPObjLP2 |= SMB_buf[9];

// use LP1 if you want a safer absence measurement

// use LP2 if you want a better presence measurement

TPOTthres = TPObjLP1 / 8; // 20 bits maped on 17 bits

TPOTthres >>= 1; // last bit is not used

// set now the current thereshold

write_register(29, (char)TPOTthres);

TPOTthres >>= 8; // shift the first 8 bits to the last position

write_register(28, (char)TPOTthres);

// store the current ambient temperature as a hint if the condition is

stable

TPambient_was = TPambient;

// set the system to send an interrupt on an undertemperature event

// make sure bit 4 in register 26 is set to 0 to notice an

undertemperature event!

interruptmask = 0x10;

// enable the timer to check periodically the temperature stability

condition

// and make sure the timing of readout and real events did not skip one

interrupt condition

interruptmask |= 0x01;

interruptmask |= 0x08;

write_register(25, interruptmask);

}

// indication of new status

if (new_status == STATpresence)

{

LED = 1;

DEBUGPIN = 1;

}

else

{

LED = 0;

DEBUGPIN = 0;

}

current_status = new_status;

return 1;

}

return 0;

}

// optimize the response of the sensor by

// setting filters to fast values once an

// interrupt was detected

// call this procedure in case of all interrupts:

// returns 1 if an interrupt was handled

-7-

U:\code\Projects\CaliPile_Interface - MultiSensor\CaliPile_Interface\bin\Release\example-C-code.C Montag, 22. Mai 2017 10:39

char host_optimization()

{

char chipstatus;

char interruptstatus;

char interruptmask;

char LPsettings;

char mask;

char i;

intstatus new_status;

//LED = 1;

// read the chip status and

// interrupt status to reset the interrupt of the chip

// if this method is called via an interrupt, make

// sure the interrupt was not read previously

// otherwise use the chip status which may

// be not up-to-date depending on the readout speed

read_register(0, 32);

interruptstatus = SMB_buf[18]; // interrupt status + chip status

chipstatus = SMB_buf[19];

// simulate here the interrupt since interrupt pin is not used on this

board

// read the interruptmask

interruptmask = SMB_buf[25];

// compare interrupstatus with the mask like the sensor is doing it

if ((interruptstatus & interruptmask) == 0)

{

return 0;

}

// initialize the status

new_status = current_status;

// use the chip status to capture the current condition

// interruptstatus = chipstatus;

// initialize the chip for first time usage after power on

//if (current_status == STATnointerrupt) new_status = STATresetting;

// entrance condition to set fast filter setting

// 1. Enter only when the new_status was not redefined by another condition

// 2. must come from the no interrupt condition

// 3. must be identified as presence flag after interrupt

// 4. must have positive sign on presence flag

// use chip status not to miss a current condition which was not triggered

if (new_status == current_status && current_status == STATnointerrupt

&& (chipstatus & 0x08) != 0 && (chipstatus & 0x80) == 0)

-8-

U:\code\Projects\CaliPile_Interface - MultiSensor\CaliPile_Interface\bin\Release\example-C-code.C Montag, 22. Mai 2017 10:39

//&& (interruptstatus & 0x08) != 0 && (interruptstatus & 0x80) == 0)

{

new_status = STATsetting;

}

// entrance condition to set fast filter resetting

// 1. Enter only when the new_status was not redefined by another condition

// 2. must come from the no interrupt condition

// 3. must be identified as presence flag after interrupt

// 4. must have negative sign on presence flag

// use chip status not to miss a current condition which was not triggered

if (new_status == current_status && current_status == STATnointerrupt

&& (chipstatus & 0x08) != 0 && (chipstatus & 0x80) != 0)

//&& (interruptstatus & 0x08) != 0 && (interruptstatus & 0x80) != 0)

{

new_status = STATresetting;

}

// entrance condition to enter the no interrupt status

// 1. Enter only when the new_status was not redefined by another condition

// 2. Enter only when the current_status is setting

// 3. must have presence flag (filters catched up)

// 4. Presence sign flag must indicate negative number

// use interrupt status to look into the memory of the sensor

if (new_status == current_status && current_status == STATsetting

//&& (chipstatus & 0x08) != 0 && (chipstatus & 0x80) != 0

&& (interruptstatus & 0x08) != 0 && (interruptstatus & 0x80) != 0

)

{

new_status = STATnointerrupt;

}

// entrance condition to enter the no interrupt status

// 1. Enter only when the new_status was not redefined by another condition

// 2. Enter only when the current_status is resetting

// 3. must have presence flag (filters catched up)

// 4. Presence sign flag must indicate positive number

// use interrupt status to look into the memory of the sensor

if (new_status == current_status && current_status == STATresetting

//&& (chipstatus & 0x08) != 0 && (chipstatus & 0x80) == 0

&& (interruptstatus & 0x08) != 0 && (interruptstatus & 0x80) == 0

)

{

new_status = STATnointerrupt;

}

if (new_status != current_status)

{

// configuration according to the new status

if (new_status == STATsetting || new_status == STATresetting)

{

// make the background low pass follow the filtered signal nearly with

-9-

U:\code\Projects\CaliPile_Interface - MultiSensor\CaliPile_Interface\bin\Release\example-C-code.C Montag, 22. Mai 2017 10:39

nearly the same speed

write_register(20, 0xCD);

interruptmask = 0x08;

write_register(25, interruptmask);

// set now the presence threshold to a value of only 1 so that a sign

change

// will be triggered immediately

write_register(22, 1);

}

if (new_status == STATnointerrupt)

{

// restore default filter settings and the threshold

write_register(20, register_write[20]);

write_register(22, register_write[22]);

// prepare the system to go to sleep and listen only to the positive

presence interrupt

// trigger on the presence feature only and put your host to sleep

interruptmask = 0x08;

write_register(25, interruptmask);

}

// indication of new status

if (new_status == STATresetting || new_status == STATsetting)

{

LED = 1;

DEBUGPIN = 1;

}

else

{

LED = 0;

DEBUGPIN = 0;

}

current_status = new_status;

return 1;

}

return 0;

}

void main(void)

{

// ...

// reload SA from E2PROM

general_call(0x04);

// wait until the device is ready for communication

delay_us(300);

// write registers 20 to 29

write_configuration();

// check the correct settings

read_configuration();

-10-

U:\code\Projects\CaliPile_Interface - MultiSensor\CaliPile_Interface\bin\Release\example-C-code.C Montag, 22. Mai 2017 10:39

while (1){

// use either of both: presence_detection or host_optimization

//while (presence_detection() != 0)

{

// repreat checking the sensor as long as the sensor keeps changing its

configuration

}

while (host_optimization()!=0)

{

// repreat checking the sensor as long as the sensor keeps changing its

configuration

}

// ...

}

} // end main

-11-

