
import pcowith pco.Camera() as cam:
 cam.record()
 image, meta = cam.image()
 plt.imshow(image, cmap=‘gray‘)

 plt.show()

import pcowith pco.Camera() as cam:
 cam.record()
 image, meta = cam.image()
 plt.imshow(image, cmap=‘gray‘)

 plt.show()

import pcowith pco.Camera() as cam:
 cam.record()
 image, meta = cam.image()
 plt.imshow(image, cmap=‘gray‘)

 plt.show()

pco.python

user manual

Excelitas PCO GmbH asks you to carefully read and follow the instructions in this document.

For any questions or comments, please feel free to contact us at any time.

telephone: +49 (0) 9441 2005 50

fax: +49 (0) 9441 2005 20

postal address: Excelitas PCO GmbH

Donaupark 11

93309 Kelheim, Germany

email: pco@excelitas.com

web: www.pco.de

pco.python user manual 2.0.2

Released August 2023

©Copyright Excelitas PCO GmbH

This work is licensed under the Creative Commons Attribution-NoDerivatives 4.0 International License. To

view a copy of this license, visit http://creativecommons.org/licenses/by-nd/4.0/ or send a letter to Creative

Commons, PO Box 1866, Mountain View, CA 94042, USA.

pco.python

pco.python user manual 2.0.2 2

mailto:pco@excelitas.com
https://www.pco.de/
http://creativecommons.org/licenses/by-nd/4.0/

Contents

1 General 4

1.1 Installation . 4

1.2 Basic Usage . 4

1.3 Recorder Modes . 5

1.4 Image Formats . 6

1.5 Event and Error Logging . 7

2 API Documentation 8

2.1 Methods . 9

2.1.1 __init__ . 9

2.1.2 __exit__ . 9

2.1.3 close . 9

2.1.4 default_configuration . 10

2.1.5 record . 10

2.1.6 stop . 10

2.1.7 wait_for_first_image . 11

2.1.8 wait_for_new_image . 11

2.1.9 get_convert_control . 12

2.1.10 set_convert_control . 12

2.1.11 load_lut . 13

2.1.12 adapt_white_balance . 13

2.1.13 image . 14

2.1.14 images . 16

2.1.15 image_average . 17

2.2 Properties . 18

2.2.1 camera_name . 18

2.2.2 camera_serial . 18

2.2.3 is_recording . 18

2.2.4 is_color . 18

2.2.5 recorded_image_count . 18

2.2.6 description . 18

2.2.7 exposure_time . 19

2.2.8 delay_time . 19

2.2.9 configuration . 19

2.3 Objects . 20

2.3.1 sdk . 20

2.3.2 rec . 20

2.3.3 conv . 20

3 About Excelitas PCO 21

pco.python

pco.python user manual 2.0.2 3

1 General

The Python package pco is a powerful and easy to use high level Software Development Kit (SDK)

for working with PCO cameras. It contains everything needed for camera setup, image acquistion,

readout and color conversion.

The high-level class architecture makes it very easy to integrate PCO cameras into your own

software, while still having access to the underlying pco.sdk and pco.recorder interface for a

detailed control of all possible functionalities.

1.1 Installation

Install from pypi (recommended):

$ pip install pco

Besides the Python Standard Libary the package numpy is required and installed automatically.

For image display, some examples depend on the following pip packages and need to be installed

manually:

• opencv-python

• matplotlib

• Flask

It is suggested to use python version 3.8 and above.

1.2 Basic Usage

import matplotlib.pyplot as plt

import pco

with pco.Camera() as cam:

cam.record(mode="sequence")

image, meta = cam.image()

plt.imshow(image, cmap='gray')

plt.show()

pco.python Chapter 1

pco.python user manual 2.0.2 4

1.3 Recorder Modes

Depending on your workflow you can choose between different recording modes.

Some modes are blocking, i.e. the record function waits until recording is finished, some are

non-blocking. Some of them are storing the images in memory, the others directly as file(s) on the

disk. However, for the recorder modes which store the images as files, accessing the recorded

images is identical with the modes which store the images in memory.

Mode Storage Blocking Description

sequence Memory yes Record a sequence of images.

sequence non blocking Memory no Record a sequence of images,

do not wait until record is

finished.

ring buffer Memory no Continuously record images

in a ringbuffer, once the

buffer is full, old images are

overwritten.

fifo Memory no Record images in fifo mode,

i.e. you will always read

images sequentially and once

the buffer is full, recording will

pause until older images have

been read.

sequence dpcore Memory yes Same as sequence, but

with DotPhoton preparation

enabled.

sequence non blocking dpcore Memory no Same as

sequence_non_blocking

, but with DotPhoton

preparation enabled.

ring buffer dpcore Memory no Same as ring_buffer, but

with DotPhoton preparation

enabled.

Continued on next page

pco.python Chapter 1

pco.python user manual 2.0.2 5

Continued from previous page

Mode Storage Blocking Description

fifo dpcore Memory no Same as fifo, but with

DotPhoton preparation

enabled.

tif File no Record images directly as tif

files.

multitif File no Record images directly as one

or more multitiff file(s).

pcoraw File no Record images directly as one

pcoraw file.

dicom File no Record images directly as

dicom files.

multidicom File no Record images directly as one

or more multi-dicom file(s).

In the code this is represented as string, transferred to the record function (default is sequence):

Note Formore information on the DotPhoton preparation and image compression, please visit DotPhoton

or feel free to contact us.

1.4 Image Formats

All image data is always transferred as 2D or 3D numpy array. Besides the standard 16 bit raw

image data you also have the possibility to get your images in different formats, shown in the table

below.

The format is selected when calling the image / images / image_average functions (see 2.1.13,

2.1.14, 2.1.15) of the Camera class. The image data is stored as numpy array, which enables you

to work with it in the most pythonic way.

Format Description

Mono8,mono8 Get image as 8 bit grayscale data.

Mono16,mono16,raw16,bw16 Get image as 16 bit grayscale/raw data.

BGR8,bgr Get image as 24 bit color data in bgr format.

RGB8,rgb Get image as 24 bit color data in rgb format.

BGRA8,bgra8,bgra Get image as 32 bit color data (with alpha channel) in bgra

format.

RGBA8,rgba8,rgba Get image as 32 bit color data (with alpha channel) in rgba

format.

BGR16,bgr16 Get image as 48 bit color data in bgr format (only possible

for color cameras).

RGB16,rgb16 Get image as 48 bit color data in rgb format (only possible

for color cameras).

Note For monochrome cameras, the BGR16 format is not available and the colors in the BGR8/ BGRA8

depend on the selected lut, which is a standard grayscale mapping by default. For selecting

different lut files you can use the functions setConvertControl (see 2.1.10) or loadlut (see

2.1.11) from the camera class.

pco.python Chapter 1

pco.python user manual 2.0.2 6

https://www.dotphoton.com/

1.5 Event and Error Logging

The pco package supports the python logging library, to enable logging output of the pco

package. Therefore, the predefined StreamHandler from the pco package can be used:

logger = logging.getLogger("pco")

logger.setLevel(logging.INFO)

logger.addHandler(pco.stream_handler)

Supported logging levels are: ERROR, WARNING, INFO, DEBUG.

The logging output has following format and is written to sys.stderr:

...

[2023-03-07 10:39:21,270] [0.016 s] [sdk] get_camera_type: OK

...

pco.python Chapter 1

pco.python user manual 2.0.2 7

2 API Documentation

This section describes the methods, variables and objects of the Camera class. The following list

provides a short overview of the most important functions:

The pco.Camera class offers the following methods:

• __init__() Opens and initializes a camera with its default configuration.

• __exit__() Closes the camera and cleans up everything (e.g. end of with-statement).

• close() Closes the camera and cleans up everything.

• default_configuration() Set default configuration to the camera.

• record() Initialize and start the recording of images.

• stop() Stop the current recording.

• wait_for_first_image() Wait until the first image has been recorded.

• wait_for_new_image() Wait until a new image has been recorded.

• get_convert_control() Get current color convert settings.

• set_convert_control() Set new color convert settings.

• load_lut() Set the lut file for the convert control setting.

• adapt_white_balance() Do a white-balance according to a transferred image.

• image() Read a recorded image as numpy array.

• images() Read a series of recorded images as a list of numpy arrays.

• image_average() Read an averaged image (averaged over all recorded images) as numpy

array.

The pco.Camera class has the following properties:

• camera_name gets the camera name.

• camera_serial gets the serial number of the camera.

• is_recording gets a flag to indicate if the camera is currently recording.

• is_color gets a flag to indicate if the camera is a color camera.

• recorded_image_count gets the number of currently recorded images.

• configuration gets/sets the camera configuration.

• description gets the (static) camera description parameters.

• exposure_time gets/sets the exposure time (in seconds).

• delay_time gets/sets the delay time (in seconds).

The pco.Camera class holds the following objects:

• sdk offers direct access to all underlying functions of the pco.sdk.

• rec offers direct access to all underlying functions of the pco.recorder.

• conv offers direct access to all underlying functions of the pco.convert according to the

selected data_format.

pco.python Chapter 2

pco.python user manual 2.0.2 8

2.1 Methods

This section describes all methods offered by the pco.Camera class.

2.1.1 __init__

Description Opens and initializes the camera.

Do not call this explicitly, this function is called automatically when a camera object is created.

Either directly cam = pco.Camera() or by the with statement.

with pco.Camera() as cam:

do some stuff

Prototype
def __init__(self,

interface=None):

Parameter Name Description

interface Specific interface or list of interfaces to search for

cameras. If None, search on all interfaces. Available

parameters: "FireWire", "Camera Link MTX", "

GenICam", "Camera Link NAT", "GigE", "USB 2.0",

"Camera Link ME4", "USB 3.0", "CLHS"

2.1.2 __exit__

Description Closes the activated camera and releases the blocked ressources.

Do not call this explicitly, this function is called automatically when a camera object is destroyed.

Either directly cam.close() or by the with statement.

with pco.Camera() as cam:

do some stuff

Prototype
def __exit__(self, exc_type, exc_value, exc_traceback):

Parameter

2.1.3 close

Description Closes the activated camera and releases the blocked ressources. This function must be called

before the application is terminated. Otherwise, the resources remain occupied.

This function is called automatically if the camera object was released by the with statement. An

explicit call to close() is no longer necessary.

with pco.Camera() as cam:

do some stuff

pco.python Chapter 2

pco.python user manual 2.0.2 9

Prototype
def close(self):

2.1.4 default_configuration

Description (Re)set the camera to its default configuration.

Prototype
def default_configuration(self):

2.1.5 record

Description Creates, configures, and starts a new recorder instance. The entire camera configuration must

be set before calling record(). The properties exposure_time and delay_time are the only

exception. These properties have no effect on the recorder object and can be called up during the

recording.

Prototype
def record(self,

number_of_images=1,

mode="sequence",

file_path=None):

Parameter Name Description

number_of_images Sets the number of images allocated in the driver. The

RAM or disk (depending on the mode) of the PC limits the

maximum value.

mode Defines the recording mode for this record (see 1.3)

file_path Path where the image file(s) should be stored (only for

modes who directly save to file, see 1.3).

2.1.6 stop

Description Stops the current recording.

In 'ring buffer' and 'fifo' mode, this function must be called by the user. In 'sequence

' and 'sequence non blocking' mode, this function is automatically called up when the

number_of_images is reached.

For blocking recorder modes (see 1.3), the recording is automatically stopped when the required

number of images is reached. In this case stop() is not needed.

Prototype
def stop(self):

pco.python Chapter 2

pco.python user manual 2.0.2 10

2.1.7 wait_for_first_image

Description Wait until the first image has been recorded and is available.

In recorder mode 'sequence non blocking', 'ring buffer'. and 'fifo', the function

record() returns immediately. Therefore, this function can be used to wait for images from the

camera before calling

image(), images(), or image_average().

Prototype
def wait_for_first_image(self,

delay=True,

timeout=None):

Parameter Name Description

delay Flag if a small delay should be used in the waiting loop

(typically recommended to reduce CPU load).

timeout If not None, the waiting loop will be aborted if no image

was recorded during timeout seconds.

2.1.8 wait_for_new_image

Description Wait until a new image has been recorded and is available (i.e. an image that has not been read

yet).

Prototype
def wait_for_new_image(self,

delay=True,

timeout=None):

Parameter Name Description

delay Flag if a small delay should be used in the waiting loop

(typically recommended to reduce CPU load).

timeout If not None, the waiting loop will be aborted if no image

was recorded during timeout seconds.

pco.python Chapter 2

pco.python user manual 2.0.2 11

2.1.9 get_convert_control

Description Get the current convert control settings for the specified data format.

Prototype
def get_convert_control(self,

data_format):

Parameter Name Description

data_format Data format for which the convert settings should be

queried.

Return value Datatype Description

dict dictionary containing the current convert settings for the

specified data format.

2.1.10 set_convert_control

Description Set convert control settings for the specified data format.

Prototype
def set_convert_control(self,

data_format,

convert_ctrl):

Parameter Name Description

data_format Data format for which the convert settings should be set.

convert_ctrl Dictionary of convert control settings that should be set.

Dict Keys The available keys for convert_ctrl vary according to camera properties and image format.

Cameras with color sensor support conversion control for its Bayer pattern, non-colored must

provide a LUT file for assigning colors to the monochromic image data.

Key Supported data formats

"sharpen": <bool> "Mono8", "BGR8", "BGR16"

"adaptive_sharpen": <bool> "Mono8", "BGR8", "BGR16"

"flip_vertical": <bool> "Mono8", "BGR8", "BGR16"

"auto_minmax": <bool> "Mono8", "BGR8", "BGR16"

"min_limit": <int> "Mono8", "BGR8", "BGR16"

"max_limit": <int> "Mono8", "BGR8", "BGR16"

"gamma": <double> "Mono8", "BGR8", "BGR16"

"contrast": <int> "Mono8", "BGR8", "BGR16"

"color_temperature": <int> "BGR8", "BGR16"

"color_saturation": <int> "BGR8", "BGR16"

"color_vibrance": <int> "BGR8", "BGR16"

Continued on next page

pco.python Chapter 2

pco.python user manual 2.0.2 12

Continued from previous page

Key Supported data formats

"color_tint": <int> "BGR8", "BGR16"

"lut_file": <file_path> "BGR8", for non-colored cameras

2.1.11 load_lut

Description Set the lut file for the convert control settings.

This is just a convenience function, the lut file could also be set using set_convert_control

(see: 2.1.10).

Prototype
def load_lut(self,

data_format,

lut_file):

Parameter Name Description

data_format Data format for which the lut file should be set.

lut_file Actual lut file path to be set.

2.1.12 adapt_white_balance

Description Do a white-balance according to a transferred image.

Prototype
def adapt_white_balance(self,

image,

data_format,

roi);

Parameter Datatype Description

image Image that should be used for white-balance computation.

data_format Data format for which the white balance values should be

set.

roi If not None, use only the specified ROI for white-balance

computation.

pco.python Chapter 2

pco.python user manual 2.0.2 13

2.1.13 image

Description Get a recorded image in the given format. The type of the image is a numpy.ndarray. This array

is shaped depending on the resolution and ROI of the image.

Prototype
def image(self,

image_index=0,

roi=None,

data_format="Mono16",

comp_params=None):

Parameter Name Description

image_index Index of the image that should be queried, use PCO_-

RECORDER_LATEST_IMAGE for latest image (for recorder

modes fifo/fifo_dpcore always use 0 (see 1.3)).

roi Soft ROI to be applied, i.e. get only the ROI portion of the

image.

data_format Data format the image should have (see 1.4).

comp_params Dictionary containing the compression parameters, not

implemented yet.

Return value Datatype Description

[numpy.ndarray, dict] Tuple of image data as numpy.ndarray and metadata as

dictionary.

Dict Keys The available keys for meta can vary according to camera configuration. However, "data format

" and "recorder image number" are always available.

Key Meta data

"data format": <str> "Mono8", "Mono16", "BGR8", "BGR16", "

CompressedMono8"

"recorder image number: <int> from pco.recorder

"timestamp": <dict> {"image counter": <int>, "year": <int>,

"month": <int>, "day": <int>, "hour": <

int>, "minute": <int>, "second": <float

>, "status": <int>}

"version": metadata: <int> from PCO_METADATA_STRUCT

"exposure time": <int> from PCO_METADATA_STRUCT

"framerate": metadata: <float> in Hz

"sensor temperature": <int> from PCO_METADATA_STRUCT

"pixel clock": <int> from PCO_METADATA_STRUCT

"conversion factor": <int> from PCO_METADATA_STRUCT

"serial number": <int> from PCO_METADATA_STRUCT

"camera type": <int> from PCO_METADATA_STRUCT

"bit resolution": <int> from PCO_METADATA_STRUCT

Continued on next page

pco.python Chapter 2

pco.python user manual 2.0.2 14

Continued from previous page

Key Meta data

"sync status": <int> from PCO_METADATA_STRUCT

"dark offset": <int> from PCO_METADATA_STRUCT

"trigger mode": <int> from PCO_METADATA_STRUCT

"double image mode: <int> from PCO_METADATA_STRUCT

"camera sync mode: <int> from PCO_METADATA_STRUCT

"image type": <int> from PCO_METADATA_STRUCT

"color pattern": <int> from PCO_METADATA_STRUCT

"image size": <int> from PCO_METADATA_STRUCT

"binning": <int> from PCO_METADATA_STRUCT

"camera subtype": <int> from PCO_METADATA_STRUCT

"event number": <int> from PCO_METADATA_STRUCT

"image size offset: <int> from PCO_METADATA_STRUCT

"timestamp bcd": <dict> {"image counter": <int>, "year": <int>,

"month": <int>, "day": <int>, "hour": <

int>, "minute": <int>, "second": <float

>, "status": <int> }

Example
>>> cam.record(number_of_images=1, mode='sequence')

>>> image, meta = cam.image()

>>> type(image)

numpy.ndarray

>>> image.shape

(2160, 2560)

>>> image, metadata = cam.image(roi=(1, 1, 300, 300))

>>> image.shape

(300, 300)

pco.python Chapter 2

pco.python user manual 2.0.2 15

2.1.14 images

Description Get a series of images in the given format as list of numpy arrays.

The positions of the images to query are defined by a start index and a block size. If this block

size is None, all images, beginning with the given start index, are read

Prototype
def images(self,

roi=None,

start_idx=0,

blocksize=None,

data_format="Mono16",

comp_params=None):

Parameter Name Description

roi Soft ROI to be applied, i.e. get only the ROI portion of the

images.

start_idx Index of the first image that should be queried.

blocksize Number of images that should be copied (if None, all

recorded images, beginning at start_idx, are copied).

data_format Data format the images should have (see 1.4).

comp_params Dictionary containing the compression parameters, not

implemented yet.

Return value Datatype Description

[list(numpy.ndarray),

list(dict)]

Tuple of list of images as numpy.ndarray and list of

metadata as dictionary.

Example
>>> cam.record(number_of_images=20, mode='sequence')

>>> images, metadatas = cam.images()

>>> len(images)

20

>>> for image in images:

... print('Mean: {:7.2f} DN'.format(image.mean()))

...

Mean: 2147.64 DN

Mean: 2144.61 DN

...

>>> images = cam.images(roi=(1, 1, 300, 300))

>>> images[0].shape

(300, 300)

pco.python Chapter 2

pco.python user manual 2.0.2 16

2.1.15 image_average

Description Get an averaged image, averaged over all recorded images in the given format. The type of the

image is a numpy.ndarray.

Prototype
def image_average(self,

roi=None,

data_format="Mono16"):

Parameter Name Description

roi Soft ROI to be applied, i.e. get only the ROI portion of the

image.

data_format Data format the image should have (see 1.4).

Return value Datatype Description

numpy.ndarray Image data as numpy.ndarray.

Example
>>> cam.record(number_of_images=100, mode='sequence')

>>> avg = cam.image_average()

>>> avg = cam.image_average(roi=(1, 1, 300, 300))

pco.python Chapter 2

pco.python user manual 2.0.2 17

2.2 Properties

This section describes all variables offered by the pco.Camera class.

2.2.1 camera_name

The camera_name property gets the name of the camera as string.

This is a readonly property.

2.2.2 camera_serial

The camera_serial property gets the serial number of the camera as number.

This is a readonly property.

2.2.3 is_recording

The is_recording property is flag to check if the camera is currently recording.

This is a readonly property.

2.2.4 is_color

The is_color property is a flag to check if the camera is a color camera.

This is a readonly property.

2.2.5 recorded_image_count

The recorded_image_count property gets the count of currently recorded images.

This is a readonly property.

NOTE For recorder modes fifo and fifo_dpcore (see 1.3) this represents the current fill level of the fifo

buffer, not the overall number of recorded images. So here it would be enough to check for if

cam.recorded_image_count > 0 : to see if a new image is available.

2.2.6 description

The description property gets the (static) camera description parameters as dictionary with the

following keys:

• "serial": <integer>

• "type": <string>

• "sub type": <integer>

• "interface type": <string>

• "min exposure time": <float>

• "max exposure time": <float>

• "min exposure step": <float>

pco.python Chapter 2

pco.python user manual 2.0.2 18

• "min delay time": <float>

• "max delay time": <float>

• "min delay step": <float>

This is a readonly property.

2.2.7 exposure_time

Get/Set the exposure time [s] of the camera

2.2.8 delay_time

Get/Set the delay time [s] of the camera

2.2.9 configuration

Get/Set the current configuration of the camera. The parameters are stored in a dictionary as

shown in the following example.

config = cam.configuration

...

cam.configuration = {'exposure time': 10e-3,

'delay time': 0,

'roi': (1, 1, 512, 512),

'timestamp': 'ascii',

'pixel rate': 100_000_000,

'trigger': 'auto sequence',

'acquire': 'auto',

'noise filter': 'on,

'metadata': 'on',

'binning': (1, 1)}

The property can only be changed before the record() function is called. It is a dictionary

with a certain number of entries. Not all possible elements need to be specified. The following

sample code only changes the 'pixel rate' and does not affect any other elements of the

configuration.

with pco.Camera() as cam:

cam.configuration = {'pixel rate': 286_000_000}

cam.record()

...

pco.python Chapter 2

pco.python user manual 2.0.2 19

2.3 Objects

This section describes all objects offered by the pco.Camera class.

2.3.1 sdk

The object sdk allows direct access to all underlying functions of the pco.sdk.

>>> cam.sdk.get_temperature()

{'sensor temperature': 7.0, 'camera temperature': 38.2, 'power ←↩
temperature': 36.7}

All return values from sdk functions are dictionaries. Not all camera settings are covered by the

Camera class. Special settings have to be set directly by calling the respective sdk function.

2.3.2 rec

The object rec offers direct access to all underlying functions of the pco.recorder.

It should not be necessary to call a recorder class method directly. All functions are fully covered

by the methods of the Camera class.

2.3.3 conv

The object conv is a dictionary of convert objects to offer direct access to all underlying functions

of the pco.convert.

Valid dictionary keys are:

• Mono8: To access the settings for monochrome color conversion

• BGR8: To access the settings for color conversion

• BGR16: To access the settings for 48bit color conversion (color cameras only)

It should not be necessary to call a conv class method directly. All functions are fully covered by

the methods of the Camera class.

pco.python Chapter 2

pco.python user manual 2.0.2 20

3 About Excelitas PCO

PCO, an Excelitas Technologies® Corp. brand, is a leading specialist and Pioneer in Cameras

and Optoelectronics with more than 30 years of expert knowledge and experience of developing

and manufacturing high-end imaging systems. The company’s cutting edge sCMOS and high-

speed cameras are used in scientific and industrial research, automotive testing, quality control,

metrology and a large variety of other applications all over the world.

The PCO® advanced imaging concept was conceived in the early 1980s by imaging pioneer, Dr.

Emil Ott, who was conducting research at the Technical University of Munich for the Chair of

Technical Electrophysics. His work there led to the establishment of PCO AG in 1987 with the

introduction of the first image-intensified camera followed by the development of its proprietary

Advanced Core technologies which greatly surpassed the imaging performance standards of the

day.

Today, PCO continues to innovate, offering awide range of high-performance camera technologies

covering scientific, high-speed, intensified and FLIM imaging applications across the scientific

research, industrial and automotive sectors.

Acquired by Excelitas Technologies in 2021, PCO represents a world renowned brand of high-

performance scientific CMOS, sCMOS, CCD and high-speed cameras that complement Excelitas’

expansive range of illumination, optical and sensor technologies and extend the bounds of our

end-to-end photonic solutions capabilities.

pco.python Chapter 3

pco.python user manual 2.0.2 21

telephone:

fax:

postal address:

email:

web:

+ 49 (0) 9441 2005 50

+ 49 (0) 9441 2005 20

Excelitas PCO GmbH

Donaupark 11

93309 Kelheim, Germany

pco@excelitas.com

www.pco.de

www.excelitas.com

	General
	Installation
	Basic Usage
	Recorder Modes
	Image Formats
	Event and Error Logging

	API Documentation
	Methods
	__init__
	__exit__
	close
	default_configuration
	record
	stop
	wait_for_first_image
	wait_for_new_image
	get_convert_control
	set_convert_control
	load_lut
	adapt_white_balance
	image
	images
	image_average

	Properties
	camera_name
	camera_serial
	is_recording
	is_color
	recorded_image_count
	description
	exposure_time
	delay_time
	configuration

	Objects
	sdk
	rec
	conv

	About Excelitas PCO

