

SILICON PHOTODIODE

PRELIMINARY ENGINEERING DATA SHEET

FEATURES

- Low dark current
- Fast response
- Blue to IR spectral range
- Low junction capacitance

PRODUCT DESCRIPTION

This VTP processed P on N planar silicon photodiode is housed in a clear, T-1 3/4 end-looking package.

These diodes exhibit low dark current under reverse bias. The VTP process offers low capacitance, resulting in fast response times.

ELECTRO-OPTICAL CHARACTERISTICS @ 25° C

PARAMETER	SYMBOL	MIN.	TYP.	MAX.	UNITS
SHORT CIRCUIT CURRENT @ 100 fc, 2850 K	lsc	21			μA
SENSITIVITY @ PEAK	S _R		0.6		A/W
DARK CURRENT @ V _R = 10 V	I _D			25	nA
REVERSE BREAKDOWN VOLTAGE @ 100 µA	V _{BR}	30			V
JUNCTION CAPACITANCE @ V _R = 0 V, 1 MHz	Сл			100	pF
ANGULAR RESPONSE (50% RESPONSE POINT)	$\theta_{1/2}$		±70		Degrees

/

GENERAL CHARACTERISTICS						
PARAMETER	SYMBOL	TYPICAL RATING	UNITS			
OPEN CIRCUIT VOLTAGE @ 100 fc, 2850 K SOURCE	Voc	420	mV			
PEAK SPECTRAL RESPONSE @ 25°C	λ_{pk}	920	nm			
SPECTRAL APPLICATION RANGE	λ_{range}	400 - 1100	nm			
RISE/FALL TIMES @ 800 nm, V _R =10 V, R _L = 50 Ω	t _R / t _F	20	ns			
TEMPERATURE COEFFICIENT SHORT CIRCUIT CURRENT @ 2850 K SOURCE DARK CURRENT @ V _R = 10 V OPEN CIRCUIT VOLTAGE	TC Isc TC I _D TC V _{OC}	+0.20 +11.0 -2.0	% / °C % / °C mV/ °C			
TEMPERATURE RANGE, OPERATING & STORAGE	T _{AMB}	– 40 to +100	°C			

TYPICAL CHARACTERISTIC CURVES

ABSOLUTE SPECTRAL RESPONSE

RELATIVE JUNCTION CAPACITANCE vs BIAS VOLTAGE (REFERRED TO ZERO BIAS)

Specifications subject to change without prior notice. Information supplied by Excelitas Technologies is believed to be reliable, however, no responsibility is assumed for possible inaccuracies or omissions. The user should determine the suitability of this product in his own application. No patent rights are granted to any devices or circuits described herein.