

SDK
Software Development Kit

Windows 95/98/NT/2000

Version 5.13

SDK for Windows95/98 and WindowsNT/2000 Page 2

PCO 2001 SDK-V5.10 Subject to change without prior notice

Table of Contents

 Page

Basics... 4
Typical Implementations... 6

Commands

Camera adjustments and initialization
SET_BOARD.. 8
GET_BOARD ... 8
SET_INIT.. 9
SET_COC for SensiCam ... 10
SET_COC for DiCAM-PRO.. 20
TEST_COC .. 25

Starting an exposure and reading out the CCD
RUN_COC.. 26
STOP_COC.. 27

Interrogating the status and settings
GET_STATUS.. 28
GET_CAMERA_CCD... 29
GET_CAMERA_TYP.. 29
GET_CAMERA_ID... 30
GET_IMAGE_SIZE .. 30
GET_CCD_SIZE .. 30
GET_IMAGE_STATUS .. 31
GET_SETTINGS.. 31
GET_COC_SETTING .. 32
GET_COCTIME ... 32
GET_BELTIME... 32
GET_EXPTIME .. 32
GET_DELTIME .. 32

Reading images and converting
LOAD_OUTPUT_LUT.. 33
LOAD_COLOR_LUT.. 33
LOAD_PSEUDO_COLOR_LUT..................................... 33
CONVERT_BUFFER_12TO8 .. 34
CONVERT_BUFFER_12TOCOL................................... 35
READ_IMAGE_8BIT .. 36
READ_IMAGE_12BIT .. 37
READ_IMAGE_COL .. 38

Dialog functions
OPEN_DIALOG_CAM.. 39
LOCK_DIALOG_CAM.. 40
STATUS_DIALOG_CAM ... 40
CLOSE_DIALOG_CAM.. 40

SDK for Windows95/98 and WindowsNT/2000 Page 3

PCO 2001 SDK-V5.10 Subject to change without prior notice

OPEN_DIALOG_BW.. 41
LOCK_DIALOG_BW .. 42
SET_DIALOG_BW... 42
GET_DIALOG_BW .. 43
STATUS_DIALOG_BW ... 43
CLOSE_DIALOG_BW.. 43

OPEN_DIALOG_COL .. 44
CLOSE_DIALOG_COL .. 44
LOCK_DIALOG_COL... 45
SET_DIALOG_COL ... 45
GET_DIALOG_COL... 46
STATUS_DIALOG_COL .. 46

Recorder- and multibuffer functions
ALLOC_RECORDER... 47
FREE_RECORDER ... 47
SET_BUFFER_SIZE.. 48
GET_BUFFER_ADDR ... 48
STOP_DMA.. 49
RUN_DMA.. 49
RUN_DMA_AVG.. 50
GET_DMA_STATUS.. 50
DMA_START_SINGLE .. 51
DMA_DONE... 51

Extended image functions
DMA_IMAGE_START.. 52
CLEAR_BOARD_BUFFER .. 52
BEGIN_WAIT_IMAGE ... 53
END_WAIT_IMAGE... 53

Extended camera adjustment functions
LOAD_USER_COC.. 54
LOAD_USER_AOI ... 54

Logging functions
ENABLE_MESSAGE_LOG.. 55

Return Codes.. 56

SDK for Windows95/98 and WindowsNT/2000 Page 4

PCO 2001 SDK-V5.10 Subject to change without prior notice

SDK95/98/NT/2000 - 32Bit
Software Development Kit for SensiCam

This DLL interface is compatible to Windows95/98 and
WindowsNT/2000.

Basics

Windows95/98 Camera and PCI Interface Board control is managed on two
levels, represented by the 32 Bit DLLs sen95cam.dll and the
virtual device driver senmem.vxd, which providing the interface
to the hardware and carrying out the PCI Bus Protocol functions.
sen95cam.dll contains commands to operate the camera and
to transfer the image data from the camera to the PC memory.
This user interface consists of the functions which are described
below.

WindowsNT/2000 Camera and PCI Interface Board control is managed on two
levels, represented by the 32 Bit DLL senntcam.dll and the
device driver sennt.sys, with sennt.sys providing the interface
to the hardware and carrying out the PCI Bus Protocol functions.
senntcam.dll contains commands to operate the camera and to
transfer the image data from the camera to the PC memory.
This user interface consists of the functions which are described
below.

Variables Most of the defined functions return an integer variable (int, 32
Bit) indicating whether the function was terminated successfully.
A negative value represents an error message, whereas
positive values are warnings , 0 indicates ‘no error occurred’.
If the function creates an error code, you should try to detect the
reason for the error. The error code table at the end of this
manual might be a helpful tool for this purpose.
The parameters for a function are transferred as integer
variables (32 Bit). Tables and file names (strings) are
transferred as pointers. To functions returning a value, a pointer
of the respective type is handed over. The function writes the
return values to the memory space pointed to by the passed
pointer. Please ensure enough buffer space is available for this
purpose.
If no explicte comment is given, all numbers are decimal and
all hexadecimal numbers have the prefix 0x.

Note: For exact declaration of each function see header file
sencam.h

SDK for Windows95/98 and WindowsNT/2000 Page 5

PCO 2001 SDK-V5.10 Subject to change without prior notice

Dialog functions The SDK allows any program to send the settings which have

been selected by an user to the camera. Alternatively, there is
the option to open a dialog window as an interface to the
camera.
Additionally, these dialog functions check the various camera
types and use the corresponding input fields. We recommend to
use these dialog functions whenever possible in order to ensure
that new camera types and applications are handled by a new
SDK version Thus changes in your source code will be
minimized.

General All camera operations are defined by Camera Operation Code
tables (COC) . This tables are built and loaded to the PCI Board
with the SET_COC command. RUN_COC starts the execution
of the COC resulting in an image transfer from the camera to
the PCI Board. STOP_COC stops the execution of the COC.
The PCIBoard contains two buffers to which the images from
the camera are transferred. These buffers can be read out to
the PC memory using any of the image readout functions i.e.
READ_IMAGE_12BIT(). The buffers are organized as FIFO (
first image transferred from camera is the first to be read out)
and allow the readout from one buffer while transferring an
image from the camera to the other buffer.

The installation of the SDK will copy the necessary files to your
computer. Please see the readme file which is included in the
installation for further details.

This library is compiled with Microsoft Visual C, Version 6.0.
(Other versions are available on request)

Demo Programs On the CDROM you will find two demo programs in the following
subdirectories:

...\ sensicpp *.* for C++ (compiler 6.0)
...\ sensi_c *.* for C (compiler 6.0)

To run and or compile the programs, please copy the complete
directory to your hard disk.

SDK for Windows95/98 and WindowsNT/2000 Page 6

PCO 2001 SDK-V5.10 Subject to change without prior notice

Typical Implementations

A typical implementation of the SensiCam using the SDK would
proceed in the following steps:

0. SET_BOARD Necessary if multi boards are
 used
1. SET_INIT Initialization of the camera and of
 the hardware
2. GET_STATUS Read the camera type
3. SET_COC Set the camera adjustments,
 depending on the camera type
4. RUN_COC Start an exposure
5. GET_IMAGE_STATUS Check whether an image is
 available

in case an image is available:
6. GET_IMAGE_SIZE Read the resulting image size
7. READ_IMAGE_12BIT Read the image data
8. STOP_COC Stop an exposure and reset the
 image memory

in case of a presentation of a b/w image in VGA:
9. LOAD_OUTPUT_LUT Load the b/w Look-up-table
10. CONVERT_BUFFER_12TO8
 Convert to 8 Bit

in case of an RGB image in VGA:
9. LOAD_COLOR_LUT Load the color Look-up-table
 table
10. CONVERT_BUF_12TOCOL
 Convert to RGB

ending the program:
11. SET_INIT

The built-in dialog functions open, upon call, a dialog window
and carry out an interactive parameter setting. If adjustments
were changed, the data is automatically sent to the camera.
Calling the functions SET_COC or LOAD_LUT is not necessary
in this case. The dialog window has the option to send
messages to the main application window to ensure that the
main window can follow up any parameter changes.

SDK for Windows95/98 and WindowsNT/2000 Page 7

PCO 2001 SDK-V5.10 Subject to change without prior notice

When opening the dialog it automatically checks the attached
camera and chooses the appropriate input fields. A program run
with the dialog functions would look like this:

1. SET_INIT Initiate the camera and the
 hardware
2. OPEN_DIALOG_CAM Check and set all camera settings
3. RUN_COC Start an exposure
4. GET_IMAGE_STATUS Check if there is an image
 available

if available, then:
5. GET_IMAGE_SIZE Read the resulting image size
6. READ_IMAGE_12BIT Read the image data
7. STOP_COC Stop the exposure and reset the
 image memory

in case of a presentation of a b/w image in VGA:
8. OPEN_DIALOG_BW Read and set the b/w Look-
 up-table
9. CONVERT_BUFFER_12TO8
 Convert to 8 Bit

in case of a presentation of an RGB image in VGA:
8. OPEN_DIALOG_COL Read and set the color Look-
 up-table
9. CONVERT_BUF_12TOCOL
 Convert to RGB

ending the program:
10. CLOSE_DIALOG_CAM and/or
 CLOSE_DIALOG_BW and/or
 CLOSE_DIALOG_COL and/or
 SET_INIT

SDK for Windows95/98 and WindowsNT/2000 Page 8

PCO 2001 SDK-V5.10 Subject to change without prior notice

Camera adjustments and initialization

int SET_BOARD (int number)

If you have more than one PCI Interface Board installed in your
computer, you can set the board which is addressed by
following calls of SDK functions which don’t have an own board
parameter. The first board starts with number 0. After calling
SET_BOARD all following SDK commands will directed to the
selected board, until the next SET_BOARD command is called.

Parameters [in]
number number of PCI Interface Boards to work with
 range 0 … 4 + flag*256
flag 0: with COC reprogramming
 1: without COC reprogramming

Return Values
Zero on success. Nonzero indicates failure, returned value is
the errorcode.

There is no need to use this command if only one board is
installed in the computer. In this case this board gets
automatically the number 0.
If you use more than one board, call this command first and
then SET_INIT() . You have to repeat this sequence for each
board.

Note: The SET_BOARD call cleans the buffers on the board and
reprograms the COC. If you do not want the buffers to be
cleared and the COC to be reprogrammed, simply add 256D
(100H) to the board number value.

int GET_BOARD (int *boardnr)
This function returns the number of the board, which is currently
in use.

Parameters [out]
bordnr number of PCI Interface Boards

Return Values
Zero on success. Nonzero indicates failure, returned value is
the errorcode.

SDK for Windows95/98 and WindowsNT/2000 Page 9

PCO 2001 SDK-V5.10 Subject to change without prior notice

int SET_INIT (int mode)
 This function resets the PCI Interface Board hardware as well

as the camera to default values. It checks if the camera is
connected and the PCI interface board is installed.

Note: SET_INIT(1) or (2) has to be called before any other function
calls (except SET_BOARD) Call SET_INIT(0) to close a
selected board and for all boards before closing the application

Parameters [in]
mode Initialization mode
 0: terminate driver, shutdown
 1: initialize camera, start with standard
 parameters, without dialog dll’s
 2: initialize camera,start with stored
 parameters, loading dialog dll’s

Return Values
Zero on success. Nonzero indicates failure, returned value is
the errorcode.

For initialization in mode=1, the standard parameters for
exposure time, resolution, etc.) are used, whereas initializing in
mode=2 means that the parameter saved most recently in the
windows registry is used.
If no Registry Key has been generated or no data can be found
under ‘HKEY_CURRENT_USER\\Software\\PCO\\Camera-
Settings’, a new Registry Key with standard parameters is
generated when the OPEN_DIALOG_CAM function is called the
first time. You should choose mode=2 when using the ‘dialog’
commands, since these functions also get their parameters
from the Registry.

SDK for Windows95/98 and WindowsNT/2000 Page 10

PCO 2001 SDK-V5.10 Subject to change without prior notice

SET_COC for SensiCam

int SET_COC (int mode, int trig, int roix1, int roix2, int roiy1, int roiy2, int hbin, int vbin,
 char *table)

This function generates a COC (Camera Operation Code) which
is loaded into the program memory of the camera. All
parameters are checked to ensure that a valid set is generated.
If any of the parameters is wrong the function returns
WRONGVAL. To get a valid set of parameters TEST_COC()
can be used.

Parameters [in]
For exact description of all parameters see notes below

mode operation mode
trig trigger and start mode (auto, hw, …)
roix1,roix2 horizontal ROI (Region of Interest)
roiy1,roiy2 vertical ROI (Region of Interest)
hbin horizontal binning
vbin vertical binning
table pointer to zero terminated ASCII string with
 values for delay and exposure times

Return Values
Zero on success. Nonzero indicates failure, returned value is
the errorcode.

The following SensiCam camera types are avaiable at the
moment:
‘Long Exposure’, ‘Long Exposure QE’, ‘QE Standard’, ‘QE
Double Shutter’, ‘Fast Shutter’ and ‘Double Shutter’.
Specific settings can only be made for distinct types as
described below.

SDK for Windows95/98 and WindowsNT/2000 Page 11

PCO 2001 SDK-V5.10 Subject to change without prior notice

mode

Set the camera typ, operation mode and analog gain. It is a
combination of the following parameters
(typ+(gain*256)+(submode*65536)) respectively
((typ&0xFF) | ((gain&0xFF)*<<8) | ((submode&0xFF)<<16))
See also the defines in the cam_types.h file

typ Long Exposure:
The typ ‘Long Exposure’ is for the use with the ‘Long Exposure’
and all ‘QE’ versions of the SensiCam.

typ 0 Long Exposure (M_LONG)

gain 0 normal analog gain
 1 extended analog gain
 3 Low Light Mode1

submode 0 sequential, busy out (NORMALLONG)
 1 simultaneous, busy out (VIDEO)
 2 sequential, expos out2 (MECHSHUT)
 3 simultaneous, expos out* (MECHSHUTV)
 8 fast QE, busy out3 (QE_FAST)
 9 double QE, busy out4 (QE_DOUBLE)

1) only for cameras SensiCam QE, SensiCam QE Standard and
 SensiCam QE Double
2) the TRIG IN BNC plug at the rear of the PCI-Board is used as an output. The
 Signal on this output follows the exposure time in default mode. Setting
 additional values in the exposuretime string alters the output signal.
 For exact description contact PCO support.
3) only for cameras SensiCam QE Standard and SensiCam QE Double
4) only for camera SensiCam QE Double

submode NORMALLONG:
In the ‘Sequential’ mode delay, exposure and CCD readout are
done sequentially, i. e. in chronological order. All possible trigger
combinations are allowed.

VIDEO:
The mode ‘Simultaneous’ does not allow a delay setting.
Exposure and CCD readout are done simultaneously. The
longer duration of either exposure time or readout time
determines the maximum achievable repetition rate. For
exposure times, which are longer as twice readout time using
the mode NORMALLONG is recommended. The only allowed
trigger combinations are trig = 0x000, trig = 0x100, trig = 0x200.

MECHSHUT:
BNC-Plug at the PCI-Board is used as an output to monitor
exposure time. No trigger settings are possible. Delay, exposure
and CCD readout are done sequentially

MECHSHUTV:

SDK for Windows95/98 and WindowsNT/2000 Page 12

PCO 2001 SDK-V5.10 Subject to change without prior notice

BNC-Plug at the PCI-Board is used as an output to monitor
exposure time. No trigger settings are possible. Exposure and
CCD readout are done simultaneously

QE_FAST:
Sequential mode with possibility to set short exposure times. All
trigger combinations are allowed.

QE_DOUBLE:
Two images are taken in a sequence which is started by the
external trigger input ‘TRIG’ on the PCI Interface Board. This
sequence can be started by an rising edge (trig = 1) or by a
falling edge (trig = 2). The two exposed images are linked
together to one data set (one image with double height is
transferred, see also GET_IMAGE_SIZE). The interframing time
between the two images has to be at least 500ns.

typ Fast Shutter:
The typ Fast Shutter is for the use with the Fast Shutter version
of the SensiCam.

typ 1 Fast Shutter (M_FAST)

gain 0 normal analog gain
 1 extended analog gain

submode 0 standard (NORMALFAST)
 5 cycle (CYCLE)

submode NORMALFAST:
Single and multiple exposures with delay and exposure times
between 100ns and 1ms can be done. On a single trigger the
complete time table is started. All possible trigger combinations
are allowed.

CYCLE:
In this mode, every exposure is synchronized with an external
trigger event. Only external trigger modes are allowed.Every
delay-, exposuretime pair can be repeated up to 1000 times.
Each event must be released by its own trigger pulse. This
means if you set e.g. 20 exposure times, you need 20 trigger
events to generate one image.

SDK for Windows95/98 and WindowsNT/2000 Page 13

PCO 2001 SDK-V5.10 Subject to change without prior notice

typ Double Shutter:

The typ Fast Shutter is for the use with the Double Shutter
version of the SensiCam.

typ 1 Double Shutter (M_FAST)

gain 0 normal analog gain
 1 extended analog gain

submode 0 standard (NORMALFAST)
 1 double 200ns (DOUBLE)
 2 double 1µs (DOUBLEL)
 5 cycle (CYCLE)

To be compatible with older versions,
‘Double Shutter 200ns’ is also typ = 2 and
‘Double Shutter 1µs’ is also typ = 3.

submode NORMALFAST:
See Fast Shutter mode.

DOUBLE:
Two images are taken in a sequence which is started by the
external trigger input ‘TRIG’ on the PCI Interface Board. This
sequence can be started by an rising edge (trig = 1) or by a
falling edge (trig = 2). The two exposed images are linked
together to one data set (one image with double height is
transferred, see also GET_IMAGE_SIZE). The interframing time
between the two images has to be at least 200ns. This short
interval time between the two pictures results in an increased
blooming effect

DOUBLEL:
Two images are taken in a sequence which is started by the
external trigger input ‘TRIG’ on the PCI Interface Board. This
sequence can be started by an rising edge (trig = 1) or by a
falling edge (trig = 2). The two exposed images are linked
together to one data set (one image with double height is
transferred, see also GET_IMAGE_SIZE). The interframing time
between the two images has to be at least 1000ns. This
submode offers a widely reduced blooming effect compared to
submode DOUBLE.

CYCLE
See Fast Shutter mode.

SDK for Windows95/98 and WindowsNT/2000 Page 14

PCO 2001 SDK-V5.10 Subject to change without prior notice

trig

Set the camera trigger mode. When "trig" is set to any external
trigger mode delay and exposure times are started with a TTL-
trigger signal applied at the external trigger input "TRIG" of the
PCI Interface Board.

For SensiCam LongExposure and QE
trig 0x000 auto start, auto frame
 0x001 auto start, frame with external rising edge
 0x002 auto start, frame with external falling edge

 0x100 sequence start with external rising edge 1
 0x200 sequence start with external falling edge 1

 0x101 sequence + frame start with external
 rising edge 1
 0x202 sequence + frame start with external
 falling edge 1

All other combinations are not allowed!

1) These modes will work only with PCI Interface Boards with revision code 17
and later. Please ask factory.

There are three different modes to trigger the camera:
•� auto start (trig = 0x000, 0x001, 0x002)

Each frame will be triggered, either by an internal software
trigger or by an external trigger signal.

•� sequence start (trig = 0x100, 0x200)
An external trigger signal starts a complete sequence.

•� sequence + frame start (trig = 0x101, 0x202H)
The first external trigger starts a sequence, the second
trigger starts the first exposure (frame). The following
exposures must be triggered, too.

For SensiCam FastShutter and DoubleShutter
trig 0 no external synchronization
 1 external falling edge
 2 external rising edge

All other combinations are not allowed!

SDK for Windows95/98 and WindowsNT/2000 Page 15

PCO 2001 SDK-V5.10 Subject to change without prior notice

roix1, roix2

Set the start and end value for the horizontal Region of Interest
(ROI). One unit is 32 pixels. This setting affects the readout of
the CCD-Chip. Less data is transferred, but readout time is not
changed.

roix1 start value of horizontal ROI
roix2 end value of horizontal ROI
 range 1 ... 20 for CCD chip type 640 x 480
 range 1 ... 40 for CCD chip type 1280 x 1024
 range 1 ... 43 for CCD chip type 1376 x 1040

roiy1, roiy2
Set the start and end value for the vertical Region of Interest
(ROI). One unit is 32 pixels. This setting affects the readout of
the CCD-Chip. Less data is transferred and the readout time is
decreased.

roiy1 start value of vertical ROI
roiy2 end value of vertical ROI
 range 1 ... 15 for CCD chip type 640 x 480
 range 1 ... 32 for CCD chip type 1280 x 1024
 range 1 ... 33 for CCD chip type 1376 x 1040

Thus the smallest ROI is 32 pixels in square.
To get for example the upper right corner 32*32 pixel the ROI
settings should be roix1=1, roix2=1, roiy1=1, roiy2=1.
In the case of the ‘Double Shutter’ camera, the ROI is set for the
two half images which are then transferred as one data set of
double height.

hbin
Set the horizontal binning. This setting affects the readout of the
CCD-Chip. Less data is transferred but the readout time is not
changed.

hbin horizontal binning
 1 no binning
 other possible values
 2, 4, 8

SDK for Windows95/98 and WindowsNT/2000 Page 16

PCO 2001 SDK-V5.10 Subject to change without prior notice

vbin

Set the vertical binning. The maximal vertical binning setting
depends on the selected vertical ROI . This setting affects the
readout of the CCD-Chip. Less data is transferred and the
readout time is decreased.

vbin vertical binning
 1 no binning
 other possible values SVGA
 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024
 other possible values VGA
 2, 4, 8, 15, 16, 30, 32, 60, 64,
 120, 128, 240, 256, 480
 other possible values SensiCam QE
 2, 4, 8, 16

table
Set the delay and the exposure times. The parameter is a
pointer to a zero terminated ASCII string. The time-values are
separated by comma (,) or space (). The array is concluded by
the sequence “-1,-1”, so that variable key lengths can be
handed over. The characters ‘CR’ (13D) and ‘LF’ (10D) may be
used to structure the input string.

table pointer to string array

a) Long Exposure (NORMALLONG)
string array

 DELAY , EXPOS_WIDTH,
 -1 , -1

The delay and exposure time is in ms with a range from 0 to
1,000,000 for DELAY and from 1 to 1,000,000 for
EXPOS_WIDTH, in steps of 1 ms.
Exactly one pair of values is expected.

b) Long Exposure (VIDEO)
string array

 0 , EXPOS_WIDTH,
 -1 , -1

The exposure time is in ms with a range from 1 to 1,000,000 for
EXPOS_WIDTH, in steps of 1 ms. Exactly one pair of values is
expected.

SDK for Windows95/98 and WindowsNT/2000 Page 17

PCO 2001 SDK-V5.10 Subject to change without prior notice

c) Long Exposure (MECHSHUT)
string array

 DELAY , EXPOS_WIDTH,
 AV , AV
 START , STOP
 -1 , -1

The delay and exposure time is in ms with a range from 0 to
1,000,000 for DELAY and from 1 to 1,000,000 for
EXPOS_WIDTH, in steps of 1 ms.
If both AV values are ‘-1’, the default values are used for start
and stop time of the output Signal
If both AV values are ‘0’ the start and stop time of the output
signal is calculated according to the START and STOP values
given.
Range of START is DELAY*(-1) to EXPOS+STOP-1.
Negative values set the start time of output signal before
exposure time start, positive values after exposure time start.
Range of STOP is (DELAY*(-1))+1 to 1,000,000
Negative values set the stop time of output signal before
exposure time ends, positive values after exposure time end.

d) Long Exposure (MECHSHUTV)
string array

 0 , EXPOS_WIDTH,
 AV , AV
 START , STOP
 -1 , -1

The exposure time is in ms with a range from 0 to 1,000,000 for
EXPOS_WIDTH, in steps of 1 ms.
If both AV values are ‘-1’, the default values are used for start
and stop time of the output Signal
If both AV values are ‘0’ the start and stop time of the output
signal is calculated according to the START and STOP values
given.
Range of START is 0 to EXPOS+STOP-1.
No negative values are allowed, positive values set the start
time of output signal after exposure time start.
Range of STOP is EXPOS*(-1) to 1,000,000
Negative values set the stop time of output signal before
exposure time ends, positive values after exposure time end.

SDK for Windows95/98 and WindowsNT/2000 Page 18

PCO 2001 SDK-V5.10 Subject to change without prior notice

e) Long Exposure (QE_FAST)
string array

 DELAY , EXPOS_WIDTH,
 -1 , -1

The delay and exposure time is in ns with a range from 0 to
50,000,000 for DELAY and from 500 to 10,000,000 for
EXPOS_WIDTH, in steps of 100 ns (nearest value is selected,
get exact time with GET_EXPTIME). Exactly one pair of values
is expected.

f) Long Exposure (QE_DOUBLE)
string array

 -1 , -1

The exposure times for the two half images are determined by
the sequence of the TRIG input signal on the PCI Interface
Board. No timevalues are given in this mode

SDK for Windows95/98 and WindowsNT/2000 Page 19

PCO 2001 SDK-V5.10 Subject to change without prior notice

g) Fast Shutter (NORMALFAST)
string array

 delay1 , expos_width1,
 delay2 , expos_width2,
 ...
 delay100 , expos_width100,
 -1 , -1

All delay and exposure times are set in ‘ns’ with a range from 0
to 1,000,000, in steps of 100 ns.
Up to 100 pairs of values are possible!

d) Fast Shutter (CYCLE)’
string array

 1 , cycle1,
 delay1 , expos_width1,
 1 , cycle2,
 delay2 , expos_width2,
 ...
 1 , cycle50,
 delay50 , expos_width50,
 -1 , -1

All delay and exposure times are set in ‘ns’ with a range from 0
to 1,000,000, in steps of 200 ns.
The cycle value must be in the range of 1 ... 1000.
Up to 50 pairs of values are possible.
Every delay, expos_width must be triggered externally.
Parameter int trig: trig = 1 or trig = 2
Delay + expos_width must be ≥≥≥≥ 1µs.

d) Double Shutter
string array

 -1 , -1

The exposure times for the two half images are determined by
the sequence of the TRIG input signal on the PCI Interface
Board. No timevalues are given in this mode

Examples
Example 1
An ROI of a 640 x 480 sensor with 32 pixels horizontal and 64
pixels vertical in the top right corner has the following settings:
 int roix1, roix2 = 20, 20;
 int roiy1, roiy2 = 1, 2;

Example 2
If in addition to the situation in example 1 a horizontal binning of
2 pixels (hbin = 2) and a vertical binning of 16 lines (vbin = 16) is
set, the image size is reduced to 16 x 4 pixels.

SDK for Windows95/98 and WindowsNT/2000 Page 20

PCO 2001 SDK-V5.10 Subject to change without prior notice

SET_COC for DiCAM-PRO

int SET_COC (int mode, int trig, int roix1, int roix2, int roiy1, int roiy2, int hbin, int vbin,
 char *table)

This function generates a COC (Camera Operation Code) which
is loaded into the program memory of the camera. All
parameters are checked to ensure that a valid set is generated.
If any of the parameters is wrong the function returns
WRONGVAL. To get a valid set of parameters TEST_COC()
can be used.

Parameters [in]
For exact description of all parameters see notes below

mode operation mode
trig trigger and start mode (auto, hw, …)
roix1,roix2 horizontal ROI (Region of Interest)
roiy1,roiy2 vertical ROI (Region of Interest)
hbin horizontal binning
vbin vertical binning
table pointer to zero terminated ASCII string with
 values for DiCAM-PRO specials, delay and
 exposure times

Return Values
Zero on success. Nonzero indicates failure, returned value is
the errorcode.

mode
Set the camera typ, operation mode and analog gain. It is a
combination of the following parameters
(typ+(gain*256)+(submode*65536)) respectively
((typ&0xFF) | ((gain&0xFF)*<<8) | ((submode&0xFF)<<16))
See also the defines in the cam_types.h file

typ 5 Dicam Pro (M_DICAM)
gain 0 normal analog gain
 1 extended analog gain
submode 0 single trigger mode
 1 multi trigger mode
 2 double trigger mode

submode DPSINGLE:
A single exposure is released with one trigger event and stored
into one frame.

DPMULTI:
Multiple exposures are released with one trigger event and
stored into one frame.

DPDOUBLE:
A double exposure with short interframing time is released with
one trigger event and stored into two frames.

SDK for Windows95/98 and WindowsNT/2000 Page 21

PCO 2001 SDK-V5.10 Subject to change without prior notice

trig

Trigger setting of Dicam-Pro is done in the string-table, so trig
must always be set to zero.

trig 0: auto start, auto frame

All other values are not allowed!

roix1, roix2
Set the start and end value for the horizontal Region of Interest.
One unit is 32 pixels. This setting affects the readout of the
CCD-Chip. Less data is transferred, but readout time is not
changed.

roix1 start value of horizontal ROI
roix2 end value of horizontal ROI
 range 1 ... 20 for CCD chip type 640 x 480
 range 1 ... 40 for CCD chip type 1280 x 1024

roiy1, roiy2
Set the start and end value for the vertical Region of Interest.
One unit is 32 pixels. This setting affects the readout of the
CCD-Chip. Less data is transferred and the readout time is
decreased.

roiy1 start value of vertical ROI
roiy2 end value of vertical ROI
 range 1 ... 15 for CCD chip type 640 x 480
 range 1 ... 32 for CCD chip type 1280 x 1024

Thus the smallest ROI is 32 pixels in square.
In the case of the double trigger mode, the ROI is set for the two
half images which are then transferred as one data set of
double height.

SDK for Windows95/98 and WindowsNT/2000 Page 22

PCO 2001 SDK-V5.10 Subject to change without prior notice

hbin

Set the horizontal binning. This setting affects the readout of the
CCD-Chip. Less data is transferred but the readout time is not
changed.

hbin horizontal binning
 1 no binning
 other possible values
 2, 4, 8

vbin
Set the vertical binning. The maximal vertical binning setting
depends on the selected vertical ROI . This setting affects the
readout of the CCD-Chip. Less data is transferred and the
readout time is decreased.

vbin vertical binning
 1 no binning
 other possible values SVGA
 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024
 other possible values VGA
 2, 4, 8, 15, 16, 30, 32, 60, 64,
 120, 128, 240, 256, 480

SDK for Windows95/98 and WindowsNT/2000 Page 23

PCO 2001 SDK-V5.10 Subject to change without prior notice

table

Set the special Dicam-Pro values and delay and exposure
times. The parameter is a pointer to a zero terminated ASCII
string. All values are separated by comma (,) or space (). The
array is concluded by the sequence “-1,-1”, so that variable key
lengths can be handed over. The characters ‘CR’ (13D) and ‘LF’
(10D) may be used to structure the input string.

table pointer to string array

string array

 phosphordecay, mcpgain, trigger, loops,
 delayhigh1, delaylow1, timehigh1, timelow1,
 delayhigh2, delaylow2, timehigh2, timelow2,
 delayhigh3, delaylow3, timehigh3, timelow3,
 -1, -1

phosphordecay 0 … 100 in [ms]
mcpgain 0 ... 999
trigger 0 no trigger
 1 extern rising edge
loops 1 ... 256

mintime minimum pulse time, depending on the pulser
mindeltime minimum time between two pulses

If loop is set greater than 1, first delay value must also be
greater than mindeltime.

Three DiCAM-PRO modes are defined:

a) DiCAM-PRO single trigger mode
mintime and mindeltime depends on the pulser type, see table
below

time and delay setting steps as follows (in ns):
3, 5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80, 90, 100, 120, 140, ...
, 1000 in 20ns steps

pulser type mintime in [ns] mindeltime in [ns]

HVP3X-3 3 - 10 - 20 - 25 - 30 500
HVP3X-5 5 - 10 - 20 - 25 - 30 500
HVP3X-20 5 - 10 - 20 - 25 - 30 500
HVP3N 3 - 10 - 15 - 20 - 25 300000
HVP5N 5 - 10 - 15 - 20 – 25 300000
HVP2N 100 500

delayhigh1 0 ... 999999ms
delaylow1 0 ... 999999ns
timehigh1 0 ... 999999ms
timelow1 mintime ... 999999ns

SDK for Windows95/98 and WindowsNT/2000 Page 24

PCO 2001 SDK-V5.10 Subject to change without prior notice

b) DiCAM-PRO multi trigger mode
mintime = 20
mindeltime = 500ns or 300µs (depends on the pulser type)
time and delay settings in 20ns steps.

delayhigh1 0 ... 999ms
delaylow1 0 ... 999980ns
timehigh1 0 ... 999ms
timelow1 mintime ... 999980ns

delayhigh2 0 ... 999ms
delaylow2 mindeltime ... 999980ns
timehigh2 0 ... 999ms
timelow2 mintime ... 999980ns

delayhigh3 0 ... 999ms
delaylow3 mindeltime ... 999980ns
timehigh33 0 ... 999ms
timelow3 mintime ... 999980ns

c) DiCAM-PRO double trigger mode
mintime = 20
mindelpulser = 500ns or 300µs (depends on the pulser type)
time and delay settings in 20ns steps.

delayhigh1 0 ... 10ms
delaylow1 0 ... 999980ns
timehigh1 0 ... 999ms
timelow1 mintime ... 999980ns

delayhigh2 0 ... 10ms
delaylow2 mindeltime ... 999980ns
timehigh2 0 ... 999ms
timelow2 mintime ... 999980ns

Note: The delay1 + delay2 + time1 must be higher than 1000ns.

SDK for Windows95/98 and WindowsNT/2000 Page 25

PCO 2001 SDK-V5.10 Subject to change without prior notice

int TEST_COC (int mode, int* trig, int* roix1, int* roix2, int* roiy1, int* roiy2,
 int* hbin, int* vbin, char* table, int* tablength)
int TESTCOC (int mode, int* trig, int* roix1, int* roix2, int* roiy1, int* roiy2,
 int* hbin, int* vbin, char* table, int* tablength)

Tests all parameters. If the parameters have a valid value, they
will be accepted, otherwise the value, next close to the valid
one, will be used.

Parameters [in]
mode,trig,roix1,roix2,roiy1,roiy2,hbin,vbin,table
 values to be tested, same as in SET_COC()
tablength length of the allocated buffer for table

Parameters [out]
mode,trig,roix1,roix2,roiy1,roiy2,hbin,vbin,table
 input or corrected values
tablength length of string built from input values

Return Values
Zero on success.
A negative number indicates failure, returned value is the
errorcode.
Positiv numbers as follows:
103 one or more values changed
104 buffer too short for internal built string

SDK for Windows95/98 and WindowsNT/2000 Page 26

PCO 2001 SDK-V5.10 Subject to change without prior notice

Starting an exposure and reading out the CCD

int RUN_COC (int mode)

Processing of the COC is started.The COC program describes
the read out procedure for the CCD as well as the delay and
exposure times for capturing a picture.
In continuous mode the COC program is started repeatedly until
the STOP_COC command is sent.

Parameters [in]
mode run mode
 0 continuous
 4 single

Return Values
Zero on success. Nonzero indicates failure, returned value is
the errorcode.

In continuous mode immediately after the first call and then after
each exposure, a new exposure is started automatically (restart
of the COC program) as long as one or both buffers of the PCI
interface board are empty. The sequence speed depends on the
selected delay and exposure times and the CCD read out time.
In single mode one single exposure is started (start of the COC
program).

Note: RUN_COC does not transfer images to the image buffers of the
PCI Interface Board as long there are all buffers occupied by
images! In order to release buffers call READ_IMAGE (releases
one buffer) or STOP_COC (releases all buffers).or
CLEAR_BOARD_BUFFER (releases one buffer)

Note: single mode should not be called in simultaneous mode,
otherwise this causes the camera and DLL to make some
processing which will decrease performance.

Example Reading in an image with a non-empty buffer
STOP_COC cleans the memory
RUN_COC starts an exposure
DO
 GET_IMAGE_STATUS query until a new picture is available
WHILE
READ_IMAGE loads an image from the PCI buffer into the
 PC memory
STOP_COC terminates the exposure

SDK for Windows95/98 and WindowsNT/2000 Page 27

PCO 2001 SDK-V5.10 Subject to change without prior notice

int STOP_COC (int mode)

This function interrupts a running exposure (execution of the
COC program). It can be used as a break option, e.g. in the
case of very long delay and exposure times. Additionally, the
image buffers of the PCI Interface Board are released. Stored
images are lost!
If the camera does a picture transfer, when this command is
called, the program is waiting until the CCD chip is cleared! (For
a SVGA Chip this delays execution for at least 150ms)

Parameters [in]
mode stop mode
 0 the only allowed value

Return Values
Zero on success. Nonzero indicates failure, returned value is
the errorcode.

Note: After STOP_COC is called the BUSY signal of the PCI Interface
Board indicates “busy state, not ready for taking images” until
SET_COC is called again. For description of the BUSY signal
see the description of the PCI Interface Board.

SDK for Windows95/98 and WindowsNT/2000 Page 28

PCO 2001 SDK-V5.10 Subject to change without prior notice

Interrogating the status and settings

int GET_STATUS (int* cam_type, int* temp_ele, int* temp_ccd)

Get status information from the camera and the PCI Interface
board and read the temperature of the camera circuits and of
the CCD sensor. For values out of range an error is returned.
New CCD-Types can not be recognized with this function, use
GET_CAMERA_CCD instead.

Parameters [out]
cam_type status information, see below
temp_ele temperature of camera electronic
 valid range -30 ... +65 °C (-22...+149 °F)
temp_ccd temperature of CCD-Chip
 valid range -30 ... +65 °C (-22...+149 °F)

Return Values
Zero on success. Nonzero indicates failure, returned value is
the errorcode.

cam_type
D17,D16 gain

00 = normal gain
01 = extended gain normal
02 = extended gain invers

D15, D14 CCD-type
 00 = 640 x 480
 01 = 640 x 480
 10 = 1280 x 1024 or

 extended CCD’s
D13, D12 Camera-type
 00 = LongExposure
 01 = FastShutter / DoubleShutter

10 = special version
11 = DiCAM-PRO

D11, D10, D9 SensiCam: version of the camera
 000...111 = vers. 1.0,1.5,2.0 ... 3.5
 DiCAM-PRO: type of the pulser

000 = HVP2N
001 = HVP5N
011 = HVP5NE
100 = HVP3X, 5ns
101 = HVP3X, 3ns
111 = HVP3X, 20ns

D8 CCD-color
 0 = black/white CCD
 1 = RGB CCD

D7,D6 if typ is FastShutter/Doubleshutter
 01 = FastShutter
 02 = DoubleShutter

D5 temperature regulation
 0 = regulating
 1 = temp locked (-13°C = 10.6 °F)

D4 ... D0 Reserved

SDK for Windows95/98 and WindowsNT/2000 Page 29

PCO 2001 SDK-V5.10 Subject to change without prior notice

int GET_CAMERA_CCD (int board, int* ccdtype)

Get the CCD-type of the camera.

Parameters [in]
board number of PCI board
 -1 board selected with last SET_BOARD() call
 0 … 3

Parameters [out]
ccdtype
 1 VGA black&white
 2 VGA color
 3 SVGA black&white
 4 SVGA color
 17 QE black&white
 23 Standard black&white
 25 Double black&white

Return Values
Zero on success. Nonzero indicates failure, returned value is
the errorcode.

int GET_CAMERA_TYP (int board, int* camtype)
Get the Camera-type.

Parameters [in]
board number of PCI board
 -1 board selected with last SET_BOARD() call
 0 … 3

Parameters [out]
camtype
 1 FAST SHUTTER
 2 LONG_EXPOSURE
 5 DICAM-PRO

Return Values
Zero on success. Nonzero indicates failure, returned value is
the errorcode.

SDK for Windows95/98 and WindowsNT/2000 Page 30

PCO 2001 SDK-V5.10 Subject to change without prior notice

int GET_CAMERA_ID (int board, int* id)

Get the Camera-ID. If available, cameras can be configured for
ID’s between 0 and 3. This makes it possible to interact with a
specified camera even if the cable connection from camera to
board is changed.

Parameters [in]
board number of PCI board
 -1 board selected with last SET_BOARD() call
 0 … 3

Parameters [out]
id camera id
 0 … 3

Return Values
Zero on success. Nonzero indicates failure, returned value is
the errorcode.

int GET_IMAGE_SIZE (int* width, int* height)
Get the actual image size. The image size depends on the
binning and ROI settings set by the last call of the SET_COC()
command and on the CCD sensor type. In ‘Double Shutter’
mode, the height of the double image (2 ... 2048) is returned.
This function returns invalid values, if called after a
LOAD_USER_COC() command.

Parameters [out]
width width of image in pixel
 1 … 1376
height height of image in pixel
 1 … 2048

Return Values
Zero on success. Nonzero indicates failure, returned value is
the errorcode.

int GET_CCD_SIZE (int* ccdsize)
int GET_CCDSIZE (int* ccdsize)

Get the total available pixels of the CCD-Chip.

Parameters [out]
ccdsize number of pixels of CCD-Chip
 307.200 (VGA)
 1.310.720 (SVGA)
 1.431.040 (QE)

Return Values
Zero on success. Nonzero indicates failure, returned value is
the errorcode.

SDK for Windows95/98 and WindowsNT/2000 Page 31

PCO 2001 SDK-V5.10 Subject to change without prior notice

int GET_IMAGE_STATUS (int* stat)

Get the current image and camera status.

Parameters [out]
stat status of camera
Bit 0 (20): 0 no READ_IMAGE function running
 1 busy, READ_IMAGE_8BIT or
 READ_IMAGE_12BIT is running

Bit 1 (21): 0 image data available in PCI board buffers
 1 no image data available (buffer empty)

Bit 2 (22): 0 COC idle, not running
 1 COC is running

Bit 4 (24): 0 none or one buffer full
 1 both buffers full

Return Values
Zero on success. Nonzero indicates failure, returned value is
the errorcode.

Example
A new image is available in the PCI Interface Board buffer if
both bit 0 and bit 1 are ‘0’.
Under certain circumstances Bit2 may read a wrong value,
therefore validate the first read by calling the function twice.

int GET_SETTINGS (int* mode, int* trig, int* roix1, int* roix2, int* roiy1, int* roiy2,
int* hbin, int* vbin, int** table)

Reads the actual camera settings, which have been set using
the commands SET_COC or DIALOG_CAM. The returned
values have the same format as described for SET_COC.

Parameters [out]
mode,trig,roix1,roix2,roiy1,roiy2,hbin,vbin,table
 actual values

Return Values
Zero on success.
A negative number indicates failure, returned value is the
errorcode.

Note: Sufficient buffer space has to be available for the string table.
Ten pairs of values require approximately 200 bytes.

Note: The values returned by GET_SETTINGS are not valid, .if the
current COC was generated by using LOAD_USER_COC,

Note: The pointer to the string table is mistakenly defined as char**.
The actual behaviour is as it was defined as char*. In order to
keep compatible to older versions of the SDK this mistake is not
corrected. Please use the following workaround:
char str[200]; // string to get the returned settings
GET_SETTINGS(…, (char**) str); // only typecast is necessary

SDK for Windows95/98 and WindowsNT/2000 Page 32

PCO 2001 SDK-V5.10 Subject to change without prior notice

int GET_COC_SETTINGS (int* mode, int* trig, int* roix1, int* roix2, int* roiy1, int* roiy2,

 int* hbin, int* vbin, int* table, int len)

Reads the actual camera settings, which have been set using
the commands SET_COC or DIALOG_CAM. The returned
values have the same format as described for SET_COC.

Parameters [in]
len size of allocated buffer for table

Parameters [out]
mode,trig,roix1,roix2,roiy1,roiy2,hbin,vbin,table
 actual values
tablength length of string built from input values

Return Values
Zero on success.
A negative number indicates failure, returned value is the
errorcode.
Positiv numbers as follows:
104 buffer for builded string too short

Note: Sufficient buffer space has to be available for the string table.
Ten pairs of values require approximately 200 bytes.

Note: The values returned by GET_SETTINGS are not valid, .if the
current COC was generated by using LOAD_USER_COC,

The following functions return the exact times of the current
COC, which was set with function SET_COC.
Readout time is the time, which is necessary to read out the
CCD sensor.The readout time depends on the CCD size, vbin,
ROI and – in case of special readout procedures – on some
other parameters specific for these procedures.
To get the COC time of one image cycle add delay and
exposure time to readout time.

float GET_COCTIME (void)

Return Values
Readout time in µs

float GET_BELTIME (void)
Return Values
Delay + exposure time in µs

float GET_EXPTIME (void)
Return Values
Exposure time in µs

float GET_DELTIME (void)
Return Values
Delay time in µs

SDK for Windows95/98 and WindowsNT/2000 Page 33

PCO 2001 SDK-V5.10 Subject to change without prior notice

Reading images and converting

int LOAD_OUTPUT_LUT (unsigned char* lut)

Copy values of lut into the internal LookUpTable (LUT) memory
used by the black&white convert functions of the SDK, which
convert the pixel values from 12Bit to 8Bit, eg.
READ_IMAGE_8BIT. The size of allocated memory for lut must
be at least 4KByte. Only the first 4KByte of lut are copied.

Parameters [in]
lut pointer to the memory containing a valid LUT

Return Values
Zero on success. Nonzero indicates failure, returned value is
the errorcode.

int LOAD_COLOR_LUT (unsigned char* redlut, unsigned char* greenlut,
 unsigned char* bluelut,)
Copy values of redlut, greenlut, bluelut to the corresponding
internal LUT memory used by the color convert functions of the
SDK which convert the pixel values from 12Bit to 3x8 bit (RGB),
eg. CONVERT_BUF_12TOCOL. The size of allocated memory
for each lut must be at least 4KByte. Only the first 4KByte of
each lut are copied.

Parameters [in]
redlut pointer to the memory containing a valid LUT
 for red pixels
greenlut pointer to the memory containing a validLUT
 for green pixels
bluelut pointer to the memory containing av valid LUT
 for blue pixels

Return Values
Zero on success. Nonzero indicates failure, returned value is
the errorcode.

int LOAD_PSEUDO_COLOR_LUT (unsigned char* redlut, unsigned char* greenlut,
 unsigned char* bluelut,)
Copy values of redlut, greenlut, bluelut to the corresponding
internal LUT memory used by the pseudo color convert
functions of the SDK eg. CONVERT_BUF_12TOCOL. The size
of allocated memory for each lut must be at least 256Byte. Only
the first 256Byte of each lut are copied.

Parameters [in]
redlut pointer to the memory containing a valid LUT
 for red pixels
greenlut pointer to the memory containing a validLUT
 for green pixels
bluelut pointer to the memory containing av valid LUT
 for blue pixels

Return Values
Zero on success. Nonzero indicates failure, returned value is
the errorcode.

SDK for Windows95/98 and WindowsNT/2000 Page 34

PCO 2001 SDK-V5.10 Subject to change without prior notice

int CONVERT_BUFFER_12TO8 (int mode, int width, int height,

 unsigned short* p12_in, unsigned char* p8_out)
A 16Bit memory area (12 bit pixels) with a size of ‘width’ x
‘height’ in pixels is converted into a 8 Bit memory area (8 Bit
pixels) with the use of the internal black&white LUT.

Parameters [in]
mode convert mode, a combination of the following flags
 NORMAL 0x0000
 FLIP 0x0001 (change lines)
 MIRROR 0x0008 (change rows)
width width of input image
 range 1 ... 1376
height height of input image
 range 1 ... 1040
p12_in pointer to a valid memory region which includes
 the 12Bit pixel data (16Bit per pixel)
p8_out pointer to a valid memory region which
 will receive the output data (8Bit per pixel).

Return Values
Zero on success. Nonzero indicates failure, returned value is
the errorcode.

If FLIP flag or MIRROR flag is set not only the pixel data is
converted but also the total image is flipped or mirrored resp.
Combination of both flags (mode = FLIP + MIRROR) is possible
which results in an 180° rotated image. In other words: FLIP
swaps the lines, MIRROR swaps the columns:

FLIP: line 0 -> line n-1 MIRROR: col 0 -> col n-1
 line 1 -> line n-2 col 1 -> col n-2
 … …
 line n-2 -> line 1 col n-2 -> col 1
 line n-1 -> line 0 col n-1 -> col 0

SDK for Windows95/98 and WindowsNT/2000 Page 35

PCO 2001 SDK-V5.10 Subject to change without prior notice

int CONVERT_BUFFER_12TOCOL (int mode, int width, int height,

 unsigned short* p12_in, unsigned char* p_out)
A 16 bit memory area (12 bit pixel) with dimensions ‘width’ and
‘height’ in pixels is converted into a COLOR memory area with 3
colors of 8 Bit each (BGR) using the internal LUT’s, which have
been loaded with LOAD_COLOR_LUT or
LOAD_PSEUDO_COLOR_LUT. The missing intermediate
values of the colors red, green and blue are interpolated.

Parameters [in]
mode convert mode, a combination of the following flags
 NORMAL 0x0000 (convert to BGR)
 FLIP 0x0001 (change lines)
 32BIT 0x0002 (convert to BGR0)
 MIRROR 0x0008 (change rows)
 PSEUDO 0x0010 (convert via pseudo)
 LOW_AV 0x0020 (low average enable)

width horizontal size of image
height vertical size of image

p12_in pointer to a valid memory region which includes
 the 12Bit pixel data (16Bit per pixel)
p_out pointer to a valid memory region which
 will receive the output data.
 If 32BIT flag is set, 4x8 bit else 3x8 bit
 for each pixel must be reserved

Return Values
Zero on success. Nonzero indicates failure, returned value is
the errorcode.

If the 32BIT flag is not set, the colors are converted into 3 Byte
(24 Bit), whereas , if 32BIT flag is, set the colors are converted
into 4 Byte, with the last Byte set to 0.
If FLIP flag or MIRROR flag is set, not only the pixel data is
converted but also the total image flipped (mirrored horizontal)
or mirrored (mirrored vertical) resp. Combination of both flags
(mode = FLIP + MIRROR) is possible which results in an 180°
rotated image. For a more detailed description of the MIRROR
and FLIP flags see CONVERT_BUFFER_12TO8 (page 34).
If the PSEUDO flag is not set, the convert function uses the
COLOR_LUT to convert images from color camera to color
images.
If the LOW_AV flag is not set, the resulting color images get
higher color resolution and less spatial resolution, otherwise the
color images get higher spatial resolution and less color
resolution.
If the PSEUDO Flag is set, the convert function uses first the
black&white LUT and than the PSEUDO_COLOR_LUT to
convert b/w images into pseudocolor images. LOW_AV flag
must not be set.

SDK for Windows95/98 and WindowsNT/2000 Page 36

PCO 2001 SDK-V5.10 Subject to change without prior notice

int READ_IMAGE_8BIT (int mode, int width, int height, unsigned char* pointer)

This function reads an image with the selected ‘width’ and
‘height’ (in pixels) from the PCI Interface Board buffer, converts
the data from 12 bit to 8 bit data using the internal LUT loaded
with LOAD_OUTPUT_LUT. The converted image is written into
the memory area specified by the pointer If specified by the
flags the image is mirrored or flipped.
If the function was successful, the PCI Interface Board buffer
containing the image is released and the image can not be read
again.
The number of bytes which are read is ‘width’ x ‘height’.
In ‘Double Shutter’ mode (cf. SET_COC) the two half images
are read as one data set of double height when this function is
called.

Parameters [in]
mode convert mode, a combination of the following flags
 NORMAL 0x0000
 FLIP 0x0001 (change lines)
 MIRROR 0x0008 (change rows)

width horizontal size of image
height vertical size of image

pointer pointer to a valid memory region which
 will receive the output data (8Bit per pixel).

Return Values
Zero on success.
Below zero indicates failure, returned value is the errorcode.
100 = No picture is in Board buffer

If FLIP flag or MIRROR flag is set, not only the pixel data is
converted but also the total image flipped (mirrored horizontal)
or mirrored (mirrored vertical) resp. Combination of both flags
(mode = FLIP + MIRROR) is possible which results in an 180°
rotated image. For a more detailed description of the MIRROR
and FLIP flags see CONVERT_BUFFER_12TO8 (page 34).
FLIP and/or MIRROR require additional processing time
(approx. 5 ms) compared to ‘normal’.

SDK for Windows95/98 and WindowsNT/2000 Page 37

PCO 2001 SDK-V5.10 Subject to change without prior notice

int READ_IMAGE_12BIT (int mode, int width, int height, unsigned short* pointer)

This function reads an image with the selected ‘width’ and
‘height’ (in pixels) from the PCI Interface Board buffer and writes
it into the memory area specified by the pointer.

Win95/98: Small Blocks of DMA-transfers are used to write from board to
PC-Memory. Simultaneously the data is written to the selected
memory area.

WinNT/2000: Direct DMA-transfer to PC-Memopry is used to write data from
the board buffer.
If the function was successful, the PCI Interface Board buffer
containing the image is released and the image can not be read
again.
The number of bytes which are read is ‘width’ * ‘height’ *2.
In ‘Double Shutter’ mode (cf. SET_COC) the two half images
are read as one data set of double height when this function is
called.

Parameters [in]
mode convert mode, a combination of the following flags
 NORMAL 0x0000
 FLIP 0x0001 (change lines)
 MIRROR 0x0008 (change rows)

width horizontal size of image
height vertical size of image

pointer pointer to a valid memory region which
 will receive the output data (16Bit per pixel).

Return Values
Zero on success.
Below zero indicates failure, returned value is the errorcode.
100 = No picture is in Board buffer

If FLIP flag or MIRROR flag is set, not only the pixel data is
converted but also the total image flipped (mirrored horizontal)
or mirrored (mirrored vertical) resp. Combination of both flags
(mode = FLIP + MIRROR) is possible which results in an 180°
rotated image. For a more detailed description of the MIRROR
and FLIP flags see CONVERT_BUFFER_12TO8 (page 34).
FLIP and/or MIRROR require additional processing time
(approx. 5 ms) compared to ‘normal’.

Example SET_INIT(1)
SET_COC(3, 1, 10, 10, 20, 4, 2, *table)
 ‘Double Shutter’
 ‘roi window horizontal 320 pixels, vertical 320 pixels’
 ‘binning’
 ‘Gives a data set of 80 x 160 pixels per half image’
GET_IMAGE_SIZE(int *width, int *height)
 ‘width=80, height=320’
 ‘In SET_COC ‘Double Shutter’ was selected, therefore it is
 returned with double height’
READ_IMAGE_SIZE(0, 80, 320, word *pointer)
 ‘The two half images are read as one data set’

SDK for Windows95/98 and WindowsNT/2000 Page 38

PCO 2001 SDK-V5.10 Subject to change without prior notice

int READ_IMAGE_COL (int mode, int width, int height, unsigned char* bcol)

This function reads an image with the selected ‘width’ and
‘height’ (in pixels) from the PCI Interface Board buffer and writes
it into the memory area specified by the pointer ‘bcol’.
READ_IMAGE_12Bit() is used to read the data from the PCI
Interface Board. The 12 bit data is then converted into 3 (4) x 8
bit data using the LUT loaded with LOAD_COLOR_LUT.
If the function was successful, the PCI Interface Board buffer
containing the image is released and the image can not be read
again.
The number of bytes which are read is ‘3 (4) x width x height’,
depending on the 32BIT flag
In ‘Double Shutter’ mode (cf. SET_COC) the two half images
are read as one data set of double height when this function is
called.

Parameters [in]
mode convert mode, a combination of the following flags
 NORMAL 0x0000 (convert to BGR)
 FLIP 0x0001 (change lines)
 32BIT 0x0002 (convert to BGR0)
 MIRROR 0x0008 (change rows)
 PSEUDO 0x0010 (convert via pseudo)
 LOW_AV 0x0020 (low average enable)

width horizontal size of image
height vertical size of image

bcol pointer to a valid memory region which
 will receive the output data.
 If 32BIT flag is set, 4x 8Bit else 3x 8Bit
 for each pixel must be reserved

Return Values
Zero on success.
Below zero indicates failure, returned value is the errorcode.
100 = No picture is in Board buffer

If the 32BIT flag is not set, the colors are converted into 3 Byte
(24 Bit), whereas , if 32BIT flag is, set the colors are converted
into 4 Byte, with the first Byte set to 0.
If FLIP flag or MIRROR flag is set, not only the pixel data is
converted but also the total image flipped (mirrored horizontal)
or mirrored (mirrored vertical) resp. Combination of both flags
(mode = FLIP + MIRROR) is possible which results in an 180°
rotated image. For a more detailed description of the MIRROR
and FLIP flags see CONVERT_BUFFER_12TO8 (page 34).If
the PSEUDO flag is not set, the convert function uses the
COLOR_LUT to convert images from color camera to color
images. If the LOW_AV flag is not set, the resulting color
images get higher color resolution and less spatial resolution,
otherwise the color images get higher spatial resolution and less
color resolution.
If the PSEUDO Flag is set, the convert function uses the
PSEUDO_COLOR_LUT to convert b/w images into pseudocolor
images. LOW_AV flag must not be set.

SDK for Windows95/98 and WindowsNT/2000 Page 39

PCO 2001 SDK-V5.10 Subject to change without prior notice

Dialog functions

int OPEN_DIALOG_CAM (HWND hwnd, int mode, char* title)

This function opens a dialog window which lets the user change
the camera parameters roi, binning, delay and exposure times
and trigger settings.
The dialog box is created as a child window of the parent, but
has its own thread and its own message queue. Any user inputs
result in immediate action: eg. Function SET_COC() is called,
the change status flag is set and a message to the parent
window is posted.
Input is possible via keyboard or via mouse.
The ‘lock’ option is disabled when the dialog opens.

Parameters [in]
hwnd Windows handle of the calling main window
mode message mode
 0 no messages are send
 1 a messages is send to the main window
 after setting new parameters
title pointer to zero terminated text string, which is
 written in the title bar of the dialog window.
 If title is a NULL pointer, standard text is written

Return Values
Zero on success. Nonzero indicates failure, returned value is
the errorcode.

In mode=1, a message is sent to the calling window each time
settings in the dialog window are changed.
This message is defined as Windows API call:
‘PostMessage(hwnd,WM_Command,updmsg,0)’
The default value for updmsg is defined in sencam.h as
IDC_UPDATE = 1000 = 0x3E8.
If required this value can be changed as follows
Define the DWORD registry key ‘HKEY_CURRENT_USER\\
Software\\PCO\\CameraSettings\\Common\\UpdateCommand’
and type in the desired value.
All camera dialog parameters are written into the windows
registry and are reloaded when the dialog is initialized after an
open call. In the case that no registry keys have been created or
no key can be found with the name
‘HKEY_CURRENT_USER\\Software\\PCO\\CameraSettings’,
a new registry with standard parameters is generated.

SDK for Windows95/98 and WindowsNT/2000 Page 40

PCO 2001 SDK-V5.10 Subject to change without prior notice

int LOCK_DIALOG_CAM (int mode)

This function (mode=1) allows you to lock the input ports of the
window. Setting mode=0 unlocks the window. This option might
prove to be very helpful in the situation where you want to
prevent a change in the image format (change of IMAGE_SIZE)
while continuously reading images.
Changing the exposure time is allowed, also toggling in the Info
field.

Parameters [in]
mode lock mode
 0 lock disabled
 1 lock enabled

Return Values
Zero on success. Nonzero indicates failure, returned value is
the errorcode.

int STATUS_DIALOG_CAM (int* hwnd, int* status)
If the dialog window is open (via OPEN_DIALOG_CAM) the
windows handle of the dialog box (*hwnd) is returned. If closed
(via CLOSE_DIALOG_CAM) the value ‘0’ is returned. The
status flag indicates, if changes in the DIALOG_CAM window
occurred since the last call of this function. If changes were
made the status is ‘1’, if no change were made the status ‘0’ is
returned.

Parameters [out]
hwnd Windows handle of Dialog
 0 no Dialog open
status update status
 0 no parameters changed since last call
 1 parameters changed since last call

Return Values
Zero on success. Nonzero indicates failure, returned value is
the errorcode.

int CLOSE_DIALOG_CAM (void)
This function closes the DIALOG_CAM window and writes the
parameters into the registry key defined by the key name
‘HKEY_CURRENT_USER\\Software\\PCO\\CameraSettings’.

Return Values
Zero on success. Nonzero indicates failure, returned value is
the errorcode.

SDK for Windows95/98 and WindowsNT/2000 Page 41

PCO 2001 SDK-V5.10 Subject to change without prior notice

int OPEN_DIALOG_BW (HWND hwnd, int mode, char* title)

This function opens a window which allows the interactive
setting of the internal BW-LUT, which is used in BW convert
functions i.e. READ_IMAGE_8BIT.
The dialog box is created as a child window of the parent, but
has its own thread and its own message queue. Any user inputs
result in immediate action: I.e.: A new LUT table is calculated, if
necessary, the change status flag is set and a message to the
parent window is posted.
Input can be done via keyboard or mouse.
The ‘lock’ option is disabled when this dialog opens.

Parameters [in]
hwnd Windows handle of the calling main window
mode message mode
 0 no messages are send
 1 a message is send to the main window
 after setting new parameters
title pointer to zero terminated text string, which is
 shown in the title bar of the dialog window.
 If NULL pointer is passed, standard text is shown

Return Values
Zero on success. Nonzero indicates failure, returned value is
the errorcode.

In mode=1, a message is sent to the calling window each time
settings in the dialog window are changed.
The sent message is defined as Windows API call:
‘PostMessage(hwnd,WM_Command,updmsg,0)’.
The default value for updmsg is defined in sencam.h as
IDC_UPDATEBW = 1001 = 0x3E9 .
If required this value can be changed as follows
Define the DWORD registry key ‘HKEY_CURRENT_USER\\
Software\\PCO\\CameraSettings\\Common\\
UpdateCommandBW’ and type in the desired value.
All parameters are written into the windows registry and are
reloaded with every call. In the case that no registry key has
been created or no data can be found with the key name
‘HKEY_CURRENT_USER\\Software\\PCO\\CameraSettings’,
a new registry key with standard parameters is generated when
the OPEN_DIALOG_CAM command is given.

SDK for Windows95/98 and WindowsNT/2000 Page 42

PCO 2001 SDK-V5.10 Subject to change without prior notice

int LOCK_DIALOG_BW (int mode)

This function (mode=1) allows you to lock the input in the
BW-Dialog window. Setting mode=0 unlocks the window.

Parameters [in]
mode lock mode
 0 lock disabled
 1 lock enabled

Return Values
Zero on success. Nonzero indicates failure, returned value is
the errorcode.

int SET_DIALOG_BW (int bwmin, int bwmax, int linlog)
Set the values in the dialog box.
Calculate the table values for the internal LUT used for the
conversion of 12Bit data to 8Bit data according to the passed
parameters, set change status flag and post a message to the
parent window.
The parameters bwmin and bwmax define the input range
(which is a part of the complete range 0 … 4096) to be
converted to the output range (0 ... 256).
Additionally the parameter typ defines a linear (gamma=1) or a
logarithmic (gamma=0.45) diagram type for the conversion.

Parameters [in]
bwmin lower limit of conversion
 range 0 ... 4094
bwmax upper limit of conversion
 range 1 ... 4095
bwmax must be greater then bwmin

linlog diagram type
 0 linear
 1 logarithmic

Return Values
Zero on success. Nonzero indicates failure, returned value is
the errorcode.

SDK for Windows95/98 and WindowsNT/2000 Page 43

PCO 2001 SDK-V5.10 Subject to change without prior notice

int GET_DIALOG_BW (int *bwmin, int *bwmax, int *linlog)

Returns the values of the BW dialog box.

Parameters [out]
bwmin lower limit value of current conversion range
bwmax upper limit value of current conversion range
typ typ of diagram
 0 linear (gamma=1)
 1 logarithmic (gamma=0.45)

Return Values
Zero on success. Negative numbers indicate a failure, the
returned value is the errorcode

int STATUS_DIALOG_BW (int* hwnd, int* status)
If the dialog window is open (via OPEN_DIALOG_BW) the
windows handle (*hwnd) is returned. If closed (via
CLOSE_DIALOG_BW) the value ‘0’ is returned. Changes in the
DIALOG_BW window occurred since the last call of this function
set the status to ‘1’. If no change occurred a ‘0’ is returned.

Parameters [out]
hwnd Window handle of the dialog box if it is open.
 0 if dialog box is closed

status update status
 0 if no LUT change occurred since last call
 1 if LUT change occurred. The internal
 change status flag is cleared.

Return Values
Zero on success. A negative numbers indicate a failure, the
returned value is the errorcode.

int CLOSE_DIALOG_BW (void)
This function closes the DIALOG_BW window and writes the
parameters into the registry key defined by the key name
‘HKEY_CURRENT_USER\Software\PCO\CameraSettings\LUT’

Return Values
Zero on success. A negative numbers indicate a failure, the
returned value is the errorcode.

SDK for Windows95/98 and WindowsNT/2000 Page 44

PCO 2001 SDK-V5.10 Subject to change without prior notice

int OPEN_DIALOG_COL (HWND hwnd, int mode, char* title)

This function opens a window which allows the interactive
setting of the internal COLOR-LUT’s, which are used in COLOR
convert functions i.e. READ_IMAGE_12BITCOL.
The dialog box is created as a child window of the parent, but
has its own thread and its own message queue. Any user inputs
result in immediate action: I.e.: A new LUT table is calculated, if
necessary, the change status flag is set and a message to the
parent window is posted.
Input can be done via keyboard or mouse.
The ‘lock’ option is disabled when this dialog opens.

Parameters [in]
hwnd Windows handle of the calling main window
mode message mode
 0 no messages are send
 1 a message is send to the main window
 after setting new parameters
title pointer to zero terminated text string, which is
 shown in the title bar of the dialog window.
 If NULL pointer is passed, standard text is shown

Return Values
Zero on success. Nonzero indicates failure, returned value is
the errorcode.

In mode=1, a message is sent to the calling window each time
settings in the dialog window are changed.
The sent message is defined as Windows API call:
‘PostMessage(hwnd,WM_Command,updmsg,0)’
The default value for updmsg is defined in sencam.h as
IDC_UPDATECOL = 0x3EA = 1002
If required this value can be changed as follows
Define the DWORD registry key ‘HKEY_CURRENT_USER\\
Software\\PCO\\CameraSettings\\Common\\
\UpdateCommandCOL’ and type in the desired value.
All parameters are written into the windows registry’ and are
reloaded with every call. In the case that no registry key has
been created or no data can be found with the key name
‘HKEY_CURRENT_USER\\Software\\PCO\\CameraSettings’,
a new registry key with standard parameters is generated.

int CLOSE_DIALOG_COL (void)
This function closes the COLOR-Dialog window and saves the
parameters to the windows registry key named
‘HKEY_CURRENT_USER\Software\PCO\CameraSettings\LUT’

Return Values
Zero on success. A negative numbers indicate a failure, the
returned value is the errorcode.

SDK for Windows95/98 and WindowsNT/2000 Page 45

PCO 2001 SDK-V5.10 Subject to change without prior notice

int LOCK_DIALOG_COL (int mode)

This function (mode=1) allows you to lock the input in the
COLOR-Dialog window. Setting mode=0 unlocks the window.

Parameters [in]
mode lock mode
 0 lock disabled
 1 lock enabled

Return Values
Zero on success. Nonzero indicates failure, returned value is
the errorcode.

int SET_DIALOG_COL (int redmin, int redmax, int greenmin, int greenmax, int bluemin,
int bluemax, int linlog)

Set the values in the COLOR Dialog box.
Calculate the table values for the COLOR LUT’s according to
the passed parameters, set change status flag and post a
message to the parent window.
The parameters min and max define the input range (which is a
part of the complete range 0 … 4096) to be converted to the
output range (0 … 256).
Additionally the parameter typ defines a linear (gamma=1) or a
logarithmic (gamma=0.45) diagram type for the conversion.

Parameters [in]
redmin lower limit for conversion of red pixel
 range 0 … 4094
redmax upper limit for conversion of red pixel
 range 1 … 4095
 must be greater then redmin
greenmin lower limit for conversion of green pixel
 range 0 … 4094
greenmax upper limit for conversion of green pixel
 range 1 … 4095
 must be greater then greenmin
bluemin lower limit for conversion of blue pixel
 range 0 … 4094
bluemax upper limit for conversion of blue pixel
 range 1 … 4095
 must be greater then bluemin
typ typ of diagram
 0 linear (gamma=1)
 1 logarithmic (gamma=0.45)

Return Values
Zero on success. Negative numbers indicate a failure, the
returned value is the errorcode

SDK for Windows95/98 and WindowsNT/2000 Page 46

PCO 2001 SDK-V5.10 Subject to change without prior notice

int GET_DIALOG_COL (int* redmin, int* redmax, int* greenmin, int* greenmax,

int* bluemin, int* bluemax, int* typ)

Returns the values in the dialog box.

Parameters [out]

redmin lower limit of current conversion for red pixel
redmax upper limit of current conversion for red pixel
greenmin lower limit of current conversion for green pixel
greenmax upper limit of current conversion for green pixel
bluemin lower limit of current conversion for blue pixel
bluemax upper limit of current conversion for blue pixel
typ typ of diagram
 0 linear (gamma=1)
 1 logarithmic (gamma=0.45)

Return Values
Zero on success. Negative numbers indicate a failure, the
returned value is the errorcode

int STATUS_DIALOG_COL (int* hwnd, int* status)
If the dialog window is open (via OPEN_DIALOG_BW) the
windows handle (*hwnd) is returned. If closed (via
CLOSE_DIALOG_BW) the value ‘0’ is returned. Changes in the
DIALOG_BW window occurred since the last call of this function
set the status to ‘1’. If no change occurred a ‘0’ is returned.

Parameters [out]
hwnd Window handle of the dialog box if it is open.
 0 if dialog box is closed

status update status
 0 if no LUT change occurred since last call
 1 if LUT change occurred. The internal
 change status flag is cleared.

Return Values
Zero on success. A negative numbers indicate a failure, the
returned value is the errorcode.

SDK for Windows95/98 and WindowsNT/2000 Page 47

PCO 2001 SDK-V5.10 Subject to change without prior notice

Recorder- and Multibuffer-Functions

int ALLOC_RECORDER (int* count, int size)

Windows95/98 This function allocates several blocks of memory of the size

defined by ‘size’ for images. These buffers consist of linear
continuous buffer areas, data can be written to these buffers
from the camera (PCI Interface Board) via DMA.

WindowsNT This function reserves and commits memory. There is no need
of continuous buffer areas for DMA transfers in NT.
It is important that you are logged in as ‘Power User’.

Parameters [in]
count requested number of memory blocks
 0 allocate as much memory as possible
size size of one memory block

Parameters [out]
count number of received memory blocks

Return Values
Zero on success. Nonzero indicates failure, returned value is
the errorcode.

The function ‘count’ predefines the desired number and after
call of this function the number of actually allocated blocks is
returned. To allocate the maximum number of blocks set count
to 0. If you set count to another value at most count-1 is
returned because one buffer is reserved for internal use. The
maximum number of allocated blocks is limited to 1000.

The block size may be defined freely but should be at least the
size which is sufficient for storing one image. The size depends
on the CCD sensor. To get the actual cameras ccdsize use
function GET_CCD_SIZE.
Camera version which can be used in DOUBLE mode deliver
images in double height (cf. SET_COC) and therefore require
‘2x ccdsize’ to be allocated.
Generally memory blocks of larger size can be allocated.
However, Windows95/98 tends to segments large free memory
arrays, making it difficult to allocate very large memory blocks.
We recommend to use ‘2x ccdsize’.
After allocating, the memory blocks must be partitioned into
buffers of the real image size by using SET_BUFFER_SIZE.

int FREE_RECORDER (void)
Releases the allocated buffer.

Return Values
Zero on success. Nonzero indicates failure, returned value is
the errorcode.

SDK for Windows95/98 and WindowsNT/2000 Page 48

PCO 2001 SDK-V5.10 Subject to change without prior notice

int SET_BUFFER_SIZE (int* bufcount, int bufwidth, int bufheight)

Windows95/98 Buffers allocated with ALLOC_RECORDER can be partitioned

into small buffers for each image. The number of available
buffers is returned in ‘bufcount’.

WindowsNT Locks the memory blocks, reserved with ALLOC_RECORDER.
Gets physical memory for each block.

The buffer size depends on the settings ‘Binning’ and ‘ROI’ and
can be read by calling the function GET_IMAGE_SIZE (width,
height).
All DMA functions transfer images of size bufwidth*bufheight
from the PCI Interface Board to the selected buffer. The values
must match the camera settings to get best performance.

Parameters [in]
bufcount requested number of buffers
bufwidth horizontal size of image for buffers
bufheight vertical size of image for buffers

Parameters [out]
bufcount number of received buffers

Return Values
Zero on success. Nonzero indicates failure, returned value is
the errorcode.

int GET_BUFFER_ADDR (int bufnum, int* linaddr, int* bufwidth, int* bufheight)
This function delivers the linear 32 bit buffer startaddress from
the buffer of number ‘bufnum’. In addition the actual buffersize =
bufwidth x bufheight is returned.

Parameters [in]
bufnum number of buffer from which to get the information

Parameters [out]
linadr 32 bit linear address
bufwidth horizontal size of image of buffers
bufheight vertical size of image of buffers

Return Values
Zero on success. Nonzero indicates failure, returned value is
the errorcode.

SDK for Windows95/98 and WindowsNT/2000 Page 49

PCO 2001 SDK-V5.10 Subject to change without prior notice

int STOP_DMA (void)

Stops a running DMA-Transfer.

Return Values
Zero on success. Nonzero indicates failure, returned value is
the errorcode.

int RUN_DMA (int bufstart, int bufend, int mode)
This function calls a DMA transfer writing image data of the
camera (PCI Interface Board) to the buffer allocated with
ALLOC_RECORDER and prepared with SET_BUFFER_SIZE.

Note: The camera must be started with RUN_COC before RUN_DMA
is started.

At first the command starts a second thread which handles the
DMA. Then it runs into a loop in which the Windows
messagequeue is released (Peek Message, Translate
Message, Dispatch Message).
It remains in the loop until the DMA thread has finished, either
after reading the last pictures or if STOP_DMA is called.

In mode = 0 the images are written from ‘bufstart’ to ‘bufend’
and the DMA transfer terminates subsequently.
Mode = 1 is the wrap around mode. Writing starts at the first
image again after having written the last image from the
previous sequence. The DMA transfer runs continuously and
has to be terminated with the function STOP_DMA.

If a DMA transfer is active do not run any other operation!

Parameters [in]
bufstart number of first buffer, to write images in
 range 1…bufcount
bufend number of last buffer
 range 1…bufcount
bufend must be greater or equal then bufstart

mode wrapping mode
 0 single sequence
 1 sequence wrap

Return Values
Zero on success. Nonzero indicates failure, returned value is
the errorcode.

Note: The three commands RUN_DMA, RUN_DMA_AVG and
GET_DMA_STATUS are one unit and must not be mixed with
the two commands DMA_START_SINGLE and DMA_DONE
(also one unit)! Both units can be stopped by the STOP_DMA
command.

SDK for Windows95/98 and WindowsNT/2000 Page 50

PCO 2001 SDK-V5.10 Subject to change without prior notice

int RUN_DMA_AVG (int bufstart, int bufend, int mode, int average)

This function writes averaged image data to the specified buffer.
It calls a DMA transfer which adds and averages image data of
the camera (PCI Interface Board) on a reserved buffer in
computer main memory and writes the resulting data to the
buffers allocated with ALLOC_RECORDER and
SET_BUFFER_SIZE.

Note: The camera must be started with RUN_COC before
RUN_DMA_AVG is started.
At first the command starts a second thread which handles the
DMA. Then it runs into a loop in which the windows message
queue is released (Peek Message, Translate Message,
Dispatch Message).
It remains in this loop until the DMA thread has finished, either
after reading the last images or if STOP_DMA is called.

In mode = 0 the images are written from ‘bufstart’ to ‘bufend’
and the DMA-Transfer is terminated subsequently.
In mode = 1 is the wrap around mode. Writing starts at the first
image again after having written the last image from the
previous sequence. The DMA transfer runs continuously and
has to be terminated calling the function STOP_DMA.

If a DMA transfer is active do not run any other operation!

Parameters [in]
bufstart number of first buffer, to write images in
 range 1…bufcount
bufend number of last buffer
 range 1…bufcount
bufend must be greater or equal then bufstart

mode wrapping mode
 0 single sequence
 1 sequence wrap

average count of averaged images
 range 2 … 4096

Return Values
Zero on success. Nonzero indicates failure, returned value is
the errorcode.

int GET_DMA_STATUS (int* bufnum)
The variable ‘bufnum’ points to the image buffer where currently
a DMA transfer is performed.

Parameters [out]
bufnum number of buffer of current DMA-transfer

Return Values
Zero on success. Nonzero indicates failure, returned value is
the errorcode.

SDK for Windows95/98 and WindowsNT/2000 Page 51

PCO 2001 SDK-V5.10 Subject to change without prior notice

int DMA_START_SINGLE (int pics)

The function starts a DMA transfer to one of the buffers and
returns to the calling function.
The end of the transfer can be monitored using the function
DMA_DONE.

Note: The camera must be started with RUN_COC before
DMA_START_SINGLE is started.

Parameters [in]
pics number of buffer for DMA-Transfer

Return Values
Zero on success.
Below zero indicates failure, returned value is the errorcode.
100 = No picture is in Board buffer

int DMA_DONE (int* pic)
Monitors the status of the actual SINGLE DMA-Transfer.

Note: DMA_DONE must be called at least one time! Return code 0
indicates that the DMA transfer was terminated correctly,
otherwise the DMA transfer is still active. DMA_DONE must be
called until the return code is 0. If the DMA transfer seems to be
stuck, call STOP_DMA.

Parameters [out]
pic number of buffer of actual DMA-Transfer or
 0 if DMA-Transfer is finished.

Return Values
Zero on success. Nonzero indicates failure, returned value is
the errorcode.

Note: The three commands RUN_DMA, RUN_DMA_AVG and
GET_DMA_STATUS are one unit and must not be mixed with
the two commands DMA_START_SINGLE and DMA_DONE
(also one unit)!
Both units can be stopped by the STOP_DMA command.

SDK for Windows95/98 and WindowsNT/2000 Page 52

PCO 2001 SDK-V5.10 Subject to change without prior notice

Extended image functions

int DMA_IMAGE_START (int board, int width, int height, unsigned short* frame, HANDLE

picevent).

Note: This command is only available for Windows NT / 2000.

This command starts a DMA transfer of one image from the
board buffer to the PC memory location ‘frame’.
The function always returns immediately. If no image is availabe
in the board buffers the return code is 100 and no transfer is
started.
When the transfer is done, the event picevent is set. Wait for
this event with any of the Windows wait functions i.e.
WaitForSingleObject(…).

Parameters [in]
board number of board
width number of pixels in each line in the image pic
height number of lines in the image
frame pointer to begin of the PC memory area
picevent HANDLE of event (created with CreateEvent
 or similar

Return Values
Zero on success.
Below zero indicates failure, returned value is the errorcode.
100 = No picture is in Board buffer

int CLEAR_BOARD_BUFFER (int board)

This command clears one picture from the board buffer in the
selected board.

Note: This function must not be called if no image is in one of the
board buffers

Parameters [in]
board number of board

Return Values
Zero on success. Nonzero indicates failure, returned value is
the errorcode.

SDK for Windows95/98 and WindowsNT/2000 Page 53

PCO 2001 SDK-V5.10 Subject to change without prior notice

int BEGIN_WAIT_IMAGE(int board, HANDLE picinevent)

Note: This command is only available for Windows NT / 2000.

This command enables the board functions to generates an
event, if an image is available in the image buffer of the PCI
Interface Board. The function returns immediately. When an
image is available in the board buffers, the event picinevent is
set. Wait for this event with any of the Windows wait functions
i.e. WaitForSingleObject(…).

Note: Enabling the event generation increases interrrupt processing
time and therefore decreases system performance. If no longer
needed END_WAIT_IMAGE() should be called.

Parameters [in]
board number of board
picinevent HANDLE of event (created with CreateEvent
 or similar

Return Values
Zero on success. Nonzero indicates failure, returned value is
the errorcode.

int END_WAIT_IMAGE(int board)

Note: This command is only available for Windows NT / 2000.

This command disables board functions, which have been
enabled with BEGIN_WAIT_IMAGE() command.

Parameters [in]
board number of board

Return Values
Zero on success. Nonzero indicates failure, returned value is
the errorcode.

SDK for Windows95/98 and WindowsNT/2000 Page 54

PCO 2001 SDK-V5.10 Subject to change without prior notice

Extended camera adjustment functions

By using the following functions you can load extended COC
exposure and readout procedures which are not covered by the
default readout modes. Therefore you have to build a Camera
Operation Code (COC) table, load it with LOAD_USER_COC
and then call LOAD_USER_AOI to set the horizontal AOI.
Please contact factory for more details.

int LOAD_USER_COC (unsigned short* coc_table)
Load Camera Operation Code (COC).

Parameters [in]
coc_table pointer to a memory area with
 16 Bit COC values

Return Values
Zero on success. Nonzero indicates failure, returned value is
the errorcode.

The memory area containing the COC is transmitted into the
program memory of the camera. The COC must include at least
one END code. The transmitted program code (COC) is started
calling the RUN_COC command.
Calling LOAD_USER_COC again or calling the SET_COC
function destroys the previous COC. The camera must be in idle
mode when sending this command.
With the use of an user defined COC you can start complex
read out procedures for the CCD chip.

Note: All functions which read and return camera parameters will not
work correctly after sending a user defined COC!

int LOAD_USER_AOI (int aoixmin, int aoixmax)
Load the horizontal AOI when using a user defined COC.

Parameters [in]
aoixmin start of horizontal aoi
aoixmax end of horizontal aoi

Return Values
Zero on success. Nonzero indicates failure, returned value is
the errorcode.

The aoixmax value must be greater than aoixmin value and
aoixmax-aoixmin should not be greater than ccdxsize. The five
low order bits are ignored, thus the minimum step size is 32.
Depending on the camera typ used a minimum offset value
must be added to both input values. Please ask factory for
further details.

SDK for Windows95/98 and WindowsNT/2000 Page 55

PCO 2001 SDK-V5.10 Subject to change without prior notice

Logging functions

int ENABLE_MESSAGE_LOG(int level, char* filename).

Enables output of messages to the logfile ‘filename’.
If level is not zero the logfile is created and messages are
logged to this file. If an empty string (“”) is passed for ‘filename’,
the default name senlog_0 is used.
If level is zero the logfile is closed.

Parameters [in]
level message level, a combination of the following
 flags
 ERROR_M 0x0001
 INIT_M 0x0002
 BUFFER_M 0x0004
 PROCESS_M 0x0008
 COC_M 0x0010
 INFO_M 0x0020

filename path and name of logfile

Return Values
Zero on success. Nonzero indicates failure, returned value is
the errorcode.

SDK for Windows95/98 and WindowsNT/2000 Page 56

PCO 2001 SDK-V5.10 Subject to change without prior notice

Return Codes

Function ok
 0 no error, function call successful

Errors
 -1 initialization failed; no camera connected
 -2 timeout in any function
 -3 function call with wrong parameter
 -4 cannot locate PCI card or card driver
 -5 cannot allocate DMA buffer
 -6 reserved
 -7 DMA timeout
 -8 invalid camera mode
 -9 no driver installed
-10 no PCI bios found
-11 device is hold by another process
-12 error in reading or writing data to board
-13 wrong driver function
-14 ...-19 reserved
-20 LOAD_COC error (camera runs program memory)
-21 too many values in COC
-22 CCD temperature or electronics temperature out
 of range
-23 buffer allocate error
-24 READ_IMAGE error
-25 set/reset buffer flags is failed
-26 buffer is used
-27 call to a windows function is failed
-28 DMA error
-29 cannot open file
-30 registry error
-31 open dialog error
-32 needs newer called vxd or dll

Warnings
100 no image in PCI buffer
101 picture too dark
102 picture too bright
103 one or more values changed
104 buffer for builded string too short

PCO Computer Optics GmbHPCO Computer Optics GmbHPCO Computer Optics GmbHPCO Computer Optics GmbH
Donaupark 11
D-93309 Kelheim
fon: +49 (0)9441 2005 0
fax: +49 (0)9441 2005 20
eMail: support@pco.de
www.pco.de

mailto:support@pco.de
http://www.pco.de/

	Basics
	Typical Implementations
	Camera adjustments and initialization
	Starting an exposure and reading out the CCD
	Interrogating the status and settings
	Dialog functions
	Recorder- and Multibuffer-Functions
	
	
	
	
	Extended image functions
	Extended camera adjustment functions
	Logging functions

